HyperParameterTuningInstanceConfig

The configuration for hyperparameter tuning resources for use in training jobs launched by the tuning job. These resources include compute instances and storage volumes. Specify one or more compute instance configurations and allocation strategies to select resources (optional).

Types

Link copied to clipboard
class Builder
Link copied to clipboard
object Companion

Properties

Link copied to clipboard

The number of instances of the type specified by InstanceType. Choose an instance count larger than 1 for distributed training algorithms. See Step 2: Launch a SageMaker Distributed Training Job Using the SageMaker Python SDK for more information.

Link copied to clipboard

The instance type used for processing of hyperparameter optimization jobs. Choose from general purpose (no GPUs) instance types: ml.m5.xlarge, ml.m5.2xlarge, and ml.m5.4xlarge or compute optimized (no GPUs) instance types: ml.c5.xlarge and ml.c5.2xlarge. For more information about instance types, see instance type descriptions.

Link copied to clipboard

The volume size in GB of the data to be processed for hyperparameter optimization (optional).

Functions

Link copied to clipboard
Link copied to clipboard
open operator override fun equals(other: Any?): Boolean
Link copied to clipboard
open override fun hashCode(): Int
Link copied to clipboard
open override fun toString(): String