warmStartConfig
construct an aws.sdk.kotlin.services.sagemaker.model.HyperParameterTuningJobWarmStartConfig inside the given block
Specifies the configuration for starting the hyperparameter tuning job using one or more previous tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job.
All training jobs launched by the new hyperparameter tuning job are evaluated by using the objective metric. If you specify IDENTICAL_DATA_AND_ALGORITHM
as the WarmStartType
value for the warm start configuration, the training job that performs the best in the new tuning job is compared to the best training jobs from the parent tuning jobs. From these, the training job that performs the best as measured by the objective metric is returned as the overall best training job.
All training jobs launched by parent hyperparameter tuning jobs and the new hyperparameter tuning jobs count against the limit of training jobs for the tuning job.