createDataset
This operation applies only to Amazon Rekognition Custom Labels.
Creates a new Amazon Rekognition Custom Labels dataset. You can create a dataset by using an Amazon Sagemaker format manifest file or by copying an existing Amazon Rekognition Custom Labels dataset.
To create a training dataset for a project, specify TRAIN
for the value of DatasetType
. To create the test dataset for a project, specify TEST
for the value of DatasetType
.
The response from CreateDataset
is the Amazon Resource Name (ARN) for the dataset. Creating a dataset takes a while to complete. Use DescribeDataset to check the current status. The dataset created successfully if the value of Status
is CREATE_COMPLETE
.
To check if any non-terminal errors occurred, call ListDatasetEntries and check for the presence of errors
lists in the JSON Lines.
Dataset creation fails if a terminal error occurs (Status
= CREATE_FAILED
). Currently, you can't access the terminal error information.
For more information, see Creating dataset in the Amazon Rekognition Custom Labels Developer Guide.
This operation requires permissions to perform the rekognition:CreateDataset
action. If you want to copy an existing dataset, you also require permission to perform the rekognition:ListDatasetEntries
action.
Samples
fun main() {
//sampleStart
// Creates an Amazon Rekognition Custom Labels dataset with a manifest file stored in an Amazon S3
// bucket.
val resp = rekognitionClient.createDataset {
datasetSource = DatasetSource {
groundTruthManifest = GroundTruthManifest {
s3Object = S3Object {
bucket = "my-bucket"
name = "datasets/flowers_training/manifests/output/output.manifest"
}
}
}
datasetType = DatasetType.fromValue("TRAIN")
projectArn = "arn:aws:rekognition:us-east-1:111122223333:project/my-project/1690474772815"
}
//sampleEnd
}