createStreamProcessor

Creates an Amazon Rekognition stream processor that you can use to detect and recognize faces or to detect labels in a streaming video.

Amazon Rekognition Video is a consumer of live video from Amazon Kinesis Video Streams. There are two different settings for stream processors in Amazon Rekognition: detecting faces and detecting labels.

  • If you are creating a stream processor for detecting faces, you provide as input a Kinesis video stream (Input) and a Kinesis data stream (Output) stream for receiving the output. You must use the FaceSearch option in Settings, specifying the collection that contains the faces you want to recognize. After you have finished analyzing a streaming video, use StopStreamProcessor to stop processing.

  • If you are creating a stream processor to detect labels, you provide as input a Kinesis video stream (Input), Amazon S3 bucket information (Output), and an Amazon SNS topic ARN (NotificationChannel). You can also provide a KMS key ID to encrypt the data sent to your Amazon S3 bucket. You specify what you want to detect by using the ConnectedHome option in settings, and selecting one of the following: PERSON, PET, PACKAGE, ALL You can also specify where in the frame you want Amazon Rekognition to monitor with RegionsOfInterest. When you run the StartStreamProcessor operation on a label detection stream processor, you input start and stop information to determine the length of the processing time.

Use Name to assign an identifier for the stream processor. You use Name to manage the stream processor. For example, you can start processing the source video by calling StartStreamProcessor with the Name field.

This operation requires permissions to perform the rekognition:CreateStreamProcessor action. If you want to tag your stream processor, you also require permission to perform the rekognition:TagResource operation.