Interface AutoMLJobChannel.Builder
- All Superinterfaces:
Buildable,CopyableBuilder<AutoMLJobChannel.Builder,,AutoMLJobChannel> SdkBuilder<AutoMLJobChannel.Builder,,AutoMLJobChannel> SdkPojo
- Enclosing class:
AutoMLJobChannel
-
Method Summary
Modifier and TypeMethodDescriptionchannelType(String channelType) The type of channel.channelType(AutoMLChannelType channelType) The type of channel.compressionType(String compressionType) The allowed compression types depend on the input format and problem type.compressionType(CompressionType compressionType) The allowed compression types depend on the input format and problem type.contentType(String contentType) The content type of the data from the input source.default AutoMLJobChannel.BuilderdataSource(Consumer<AutoMLDataSource.Builder> dataSource) The data source for an AutoML channel (Required).dataSource(AutoMLDataSource dataSource) The data source for an AutoML channel (Required).Methods inherited from interface software.amazon.awssdk.utils.builder.CopyableBuilder
copyMethods inherited from interface software.amazon.awssdk.utils.builder.SdkBuilder
applyMutation, buildMethods inherited from interface software.amazon.awssdk.core.SdkPojo
equalsBySdkFields, sdkFields
-
Method Details
-
channelType
The type of channel. Defines whether the data are used for training or validation. The default value is
training. Channels fortrainingandvalidationmust share the sameContentTypeThe type of channel defaults to
trainingfor the time-series forecasting problem type.- Parameters:
channelType- The type of channel. Defines whether the data are used for training or validation. The default value istraining. Channels fortrainingandvalidationmust share the sameContentTypeThe type of channel defaults to
trainingfor the time-series forecasting problem type.- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
-
channelType
The type of channel. Defines whether the data are used for training or validation. The default value is
training. Channels fortrainingandvalidationmust share the sameContentTypeThe type of channel defaults to
trainingfor the time-series forecasting problem type.- Parameters:
channelType- The type of channel. Defines whether the data are used for training or validation. The default value istraining. Channels fortrainingandvalidationmust share the sameContentTypeThe type of channel defaults to
trainingfor the time-series forecasting problem type.- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
-
contentType
The content type of the data from the input source. The following are the allowed content types for different problems:
-
For tabular problem types:
text/csv;header=presentorx-application/vnd.amazon+parquet. The default value istext/csv;header=present. -
For image classification:
image/png,image/jpeg, orimage/*. The default value isimage/*. -
For text classification:
text/csv;header=presentorx-application/vnd.amazon+parquet. The default value istext/csv;header=present. -
For time-series forecasting:
text/csv;header=presentorx-application/vnd.amazon+parquet. The default value istext/csv;header=present. -
For text generation (LLMs fine-tuning):
text/csv;header=presentorx-application/vnd.amazon+parquet. The default value istext/csv;header=present.
- Parameters:
contentType- The content type of the data from the input source. The following are the allowed content types for different problems:-
For tabular problem types:
text/csv;header=presentorx-application/vnd.amazon+parquet. The default value istext/csv;header=present. -
For image classification:
image/png,image/jpeg, orimage/*. The default value isimage/*. -
For text classification:
text/csv;header=presentorx-application/vnd.amazon+parquet. The default value istext/csv;header=present. -
For time-series forecasting:
text/csv;header=presentorx-application/vnd.amazon+parquet. The default value istext/csv;header=present. -
For text generation (LLMs fine-tuning):
text/csv;header=presentorx-application/vnd.amazon+parquet. The default value istext/csv;header=present.
-
- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
-
compressionType
The allowed compression types depend on the input format and problem type. We allow the compression type
GzipforS3Prefixinputs on tabular data only. For all other inputs, the compression type should beNone. If no compression type is provided, we default toNone.- Parameters:
compressionType- The allowed compression types depend on the input format and problem type. We allow the compression typeGzipforS3Prefixinputs on tabular data only. For all other inputs, the compression type should beNone. If no compression type is provided, we default toNone.- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
-
compressionType
The allowed compression types depend on the input format and problem type. We allow the compression type
GzipforS3Prefixinputs on tabular data only. For all other inputs, the compression type should beNone. If no compression type is provided, we default toNone.- Parameters:
compressionType- The allowed compression types depend on the input format and problem type. We allow the compression typeGzipforS3Prefixinputs on tabular data only. For all other inputs, the compression type should beNone. If no compression type is provided, we default toNone.- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
-
dataSource
The data source for an AutoML channel (Required).
- Parameters:
dataSource- The data source for an AutoML channel (Required).- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
dataSource
The data source for an AutoML channel (Required).
This is a convenience method that creates an instance of theAutoMLDataSource.Builderavoiding the need to create one manually viaAutoMLDataSource.builder().When the
Consumercompletes,SdkBuilder.build()is called immediately and its result is passed todataSource(AutoMLDataSource).- Parameters:
dataSource- a consumer that will call methods onAutoMLDataSource.Builder- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
-