Interface MachineLearningClient
- All Superinterfaces:
AutoCloseable,AwsClient,SdkAutoCloseable,SdkClient
builder() method.
Definition of the public APIs exposed by Amazon Machine Learning-
Field Summary
FieldsModifier and TypeFieldDescriptionstatic final StringValue for looking up the service's metadata from theServiceMetadataProvider.static final String -
Method Summary
Modifier and TypeMethodDescriptiondefault AddTagsResponseaddTags(Consumer<AddTagsRequest.Builder> addTagsRequest) Adds one or more tags to an object, up to a limit of 10.default AddTagsResponseaddTags(AddTagsRequest addTagsRequest) Adds one or more tags to an object, up to a limit of 10.static MachineLearningClientBuilderbuilder()Create a builder that can be used to configure and create aMachineLearningClient.static MachineLearningClientcreate()Create aMachineLearningClientwith the region loaded from theDefaultAwsRegionProviderChainand credentials loaded from theDefaultCredentialsProvider.default CreateBatchPredictionResponsecreateBatchPrediction(Consumer<CreateBatchPredictionRequest.Builder> createBatchPredictionRequest) Generates predictions for a group of observations.default CreateBatchPredictionResponsecreateBatchPrediction(CreateBatchPredictionRequest createBatchPredictionRequest) Generates predictions for a group of observations.default CreateDataSourceFromRdsResponsecreateDataSourceFromRDS(Consumer<CreateDataSourceFromRdsRequest.Builder> createDataSourceFromRdsRequest) Creates aDataSourceobject from an Amazon Relational Database Service (Amazon RDS).default CreateDataSourceFromRdsResponsecreateDataSourceFromRDS(CreateDataSourceFromRdsRequest createDataSourceFromRdsRequest) Creates aDataSourceobject from an Amazon Relational Database Service (Amazon RDS).createDataSourceFromRedshift(Consumer<CreateDataSourceFromRedshiftRequest.Builder> createDataSourceFromRedshiftRequest) Creates aDataSourcefrom a database hosted on an Amazon Redshift cluster.createDataSourceFromRedshift(CreateDataSourceFromRedshiftRequest createDataSourceFromRedshiftRequest) Creates aDataSourcefrom a database hosted on an Amazon Redshift cluster.default CreateDataSourceFromS3ResponsecreateDataSourceFromS3(Consumer<CreateDataSourceFromS3Request.Builder> createDataSourceFromS3Request) Creates aDataSourceobject.default CreateDataSourceFromS3ResponsecreateDataSourceFromS3(CreateDataSourceFromS3Request createDataSourceFromS3Request) Creates aDataSourceobject.default CreateEvaluationResponsecreateEvaluation(Consumer<CreateEvaluationRequest.Builder> createEvaluationRequest) Creates a newEvaluationof anMLModel.default CreateEvaluationResponsecreateEvaluation(CreateEvaluationRequest createEvaluationRequest) Creates a newEvaluationof anMLModel.default CreateMlModelResponsecreateMLModel(Consumer<CreateMlModelRequest.Builder> createMlModelRequest) Creates a newMLModelusing theDataSourceand the recipe as information sources.default CreateMlModelResponsecreateMLModel(CreateMlModelRequest createMlModelRequest) Creates a newMLModelusing theDataSourceand the recipe as information sources.default CreateRealtimeEndpointResponsecreateRealtimeEndpoint(Consumer<CreateRealtimeEndpointRequest.Builder> createRealtimeEndpointRequest) Creates a real-time endpoint for theMLModel.default CreateRealtimeEndpointResponsecreateRealtimeEndpoint(CreateRealtimeEndpointRequest createRealtimeEndpointRequest) Creates a real-time endpoint for theMLModel.default DeleteBatchPredictionResponsedeleteBatchPrediction(Consumer<DeleteBatchPredictionRequest.Builder> deleteBatchPredictionRequest) Assigns the DELETED status to aBatchPrediction, rendering it unusable.default DeleteBatchPredictionResponsedeleteBatchPrediction(DeleteBatchPredictionRequest deleteBatchPredictionRequest) Assigns the DELETED status to aBatchPrediction, rendering it unusable.default DeleteDataSourceResponsedeleteDataSource(Consumer<DeleteDataSourceRequest.Builder> deleteDataSourceRequest) Assigns the DELETED status to aDataSource, rendering it unusable.default DeleteDataSourceResponsedeleteDataSource(DeleteDataSourceRequest deleteDataSourceRequest) Assigns the DELETED status to aDataSource, rendering it unusable.default DeleteEvaluationResponsedeleteEvaluation(Consumer<DeleteEvaluationRequest.Builder> deleteEvaluationRequest) Assigns theDELETEDstatus to anEvaluation, rendering it unusable.default DeleteEvaluationResponsedeleteEvaluation(DeleteEvaluationRequest deleteEvaluationRequest) Assigns theDELETEDstatus to anEvaluation, rendering it unusable.default DeleteMlModelResponsedeleteMLModel(Consumer<DeleteMlModelRequest.Builder> deleteMlModelRequest) Assigns theDELETEDstatus to anMLModel, rendering it unusable.default DeleteMlModelResponsedeleteMLModel(DeleteMlModelRequest deleteMlModelRequest) Assigns theDELETEDstatus to anMLModel, rendering it unusable.default DeleteRealtimeEndpointResponsedeleteRealtimeEndpoint(Consumer<DeleteRealtimeEndpointRequest.Builder> deleteRealtimeEndpointRequest) Deletes a real time endpoint of anMLModel.default DeleteRealtimeEndpointResponsedeleteRealtimeEndpoint(DeleteRealtimeEndpointRequest deleteRealtimeEndpointRequest) Deletes a real time endpoint of anMLModel.default DeleteTagsResponsedeleteTags(Consumer<DeleteTagsRequest.Builder> deleteTagsRequest) Deletes the specified tags associated with an ML object.default DeleteTagsResponsedeleteTags(DeleteTagsRequest deleteTagsRequest) Deletes the specified tags associated with an ML object.default DescribeBatchPredictionsResponseReturns a list ofBatchPredictionoperations that match the search criteria in the request.default DescribeBatchPredictionsResponsedescribeBatchPredictions(Consumer<DescribeBatchPredictionsRequest.Builder> describeBatchPredictionsRequest) Returns a list ofBatchPredictionoperations that match the search criteria in the request.default DescribeBatchPredictionsResponsedescribeBatchPredictions(DescribeBatchPredictionsRequest describeBatchPredictionsRequest) Returns a list ofBatchPredictionoperations that match the search criteria in the request.default DescribeBatchPredictionsIterableThis is a variant ofdescribeBatchPredictions(software.amazon.awssdk.services.machinelearning.model.DescribeBatchPredictionsRequest)operation.default DescribeBatchPredictionsIterabledescribeBatchPredictionsPaginator(Consumer<DescribeBatchPredictionsRequest.Builder> describeBatchPredictionsRequest) This is a variant ofdescribeBatchPredictions(software.amazon.awssdk.services.machinelearning.model.DescribeBatchPredictionsRequest)operation.default DescribeBatchPredictionsIterabledescribeBatchPredictionsPaginator(DescribeBatchPredictionsRequest describeBatchPredictionsRequest) This is a variant ofdescribeBatchPredictions(software.amazon.awssdk.services.machinelearning.model.DescribeBatchPredictionsRequest)operation.default DescribeDataSourcesResponseReturns a list ofDataSourcethat match the search criteria in the request.default DescribeDataSourcesResponsedescribeDataSources(Consumer<DescribeDataSourcesRequest.Builder> describeDataSourcesRequest) Returns a list ofDataSourcethat match the search criteria in the request.default DescribeDataSourcesResponsedescribeDataSources(DescribeDataSourcesRequest describeDataSourcesRequest) Returns a list ofDataSourcethat match the search criteria in the request.default DescribeDataSourcesIterableThis is a variant ofdescribeDataSources(software.amazon.awssdk.services.machinelearning.model.DescribeDataSourcesRequest)operation.default DescribeDataSourcesIterabledescribeDataSourcesPaginator(Consumer<DescribeDataSourcesRequest.Builder> describeDataSourcesRequest) This is a variant ofdescribeDataSources(software.amazon.awssdk.services.machinelearning.model.DescribeDataSourcesRequest)operation.default DescribeDataSourcesIterabledescribeDataSourcesPaginator(DescribeDataSourcesRequest describeDataSourcesRequest) This is a variant ofdescribeDataSources(software.amazon.awssdk.services.machinelearning.model.DescribeDataSourcesRequest)operation.default DescribeEvaluationsResponseReturns a list ofDescribeEvaluationsthat match the search criteria in the request.default DescribeEvaluationsResponsedescribeEvaluations(Consumer<DescribeEvaluationsRequest.Builder> describeEvaluationsRequest) Returns a list ofDescribeEvaluationsthat match the search criteria in the request.default DescribeEvaluationsResponsedescribeEvaluations(DescribeEvaluationsRequest describeEvaluationsRequest) Returns a list ofDescribeEvaluationsthat match the search criteria in the request.default DescribeEvaluationsIterableThis is a variant ofdescribeEvaluations(software.amazon.awssdk.services.machinelearning.model.DescribeEvaluationsRequest)operation.default DescribeEvaluationsIterabledescribeEvaluationsPaginator(Consumer<DescribeEvaluationsRequest.Builder> describeEvaluationsRequest) This is a variant ofdescribeEvaluations(software.amazon.awssdk.services.machinelearning.model.DescribeEvaluationsRequest)operation.default DescribeEvaluationsIterabledescribeEvaluationsPaginator(DescribeEvaluationsRequest describeEvaluationsRequest) This is a variant ofdescribeEvaluations(software.amazon.awssdk.services.machinelearning.model.DescribeEvaluationsRequest)operation.default DescribeMlModelsResponseReturns a list ofMLModelthat match the search criteria in the request.default DescribeMlModelsResponsedescribeMLModels(Consumer<DescribeMlModelsRequest.Builder> describeMlModelsRequest) Returns a list ofMLModelthat match the search criteria in the request.default DescribeMlModelsResponsedescribeMLModels(DescribeMlModelsRequest describeMlModelsRequest) Returns a list ofMLModelthat match the search criteria in the request.default DescribeMLModelsIterableThis is a variant ofdescribeMLModels(software.amazon.awssdk.services.machinelearning.model.DescribeMlModelsRequest)operation.default DescribeMLModelsIterabledescribeMLModelsPaginator(Consumer<DescribeMlModelsRequest.Builder> describeMlModelsRequest) This is a variant ofdescribeMLModels(software.amazon.awssdk.services.machinelearning.model.DescribeMlModelsRequest)operation.default DescribeMLModelsIterabledescribeMLModelsPaginator(DescribeMlModelsRequest describeMlModelsRequest) This is a variant ofdescribeMLModels(software.amazon.awssdk.services.machinelearning.model.DescribeMlModelsRequest)operation.default DescribeTagsResponsedescribeTags(Consumer<DescribeTagsRequest.Builder> describeTagsRequest) Describes one or more of the tags for your Amazon ML object.default DescribeTagsResponsedescribeTags(DescribeTagsRequest describeTagsRequest) Describes one or more of the tags for your Amazon ML object.default GetBatchPredictionResponsegetBatchPrediction(Consumer<GetBatchPredictionRequest.Builder> getBatchPredictionRequest) Returns aBatchPredictionthat includes detailed metadata, status, and data file information for aBatch Predictionrequest.default GetBatchPredictionResponsegetBatchPrediction(GetBatchPredictionRequest getBatchPredictionRequest) Returns aBatchPredictionthat includes detailed metadata, status, and data file information for aBatch Predictionrequest.default GetDataSourceResponsegetDataSource(Consumer<GetDataSourceRequest.Builder> getDataSourceRequest) Returns aDataSourcethat includes metadata and data file information, as well as the current status of theDataSource.default GetDataSourceResponsegetDataSource(GetDataSourceRequest getDataSourceRequest) Returns aDataSourcethat includes metadata and data file information, as well as the current status of theDataSource.default GetEvaluationResponsegetEvaluation(Consumer<GetEvaluationRequest.Builder> getEvaluationRequest) Returns anEvaluationthat includes metadata as well as the current status of theEvaluation.default GetEvaluationResponsegetEvaluation(GetEvaluationRequest getEvaluationRequest) Returns anEvaluationthat includes metadata as well as the current status of theEvaluation.default GetMlModelResponsegetMLModel(Consumer<GetMlModelRequest.Builder> getMlModelRequest) Returns anMLModelthat includes detailed metadata, data source information, and the current status of theMLModel.default GetMlModelResponsegetMLModel(GetMlModelRequest getMlModelRequest) Returns anMLModelthat includes detailed metadata, data source information, and the current status of theMLModel.default PredictResponsepredict(Consumer<PredictRequest.Builder> predictRequest) Generates a prediction for the observation using the specifiedML Model.default PredictResponsepredict(PredictRequest predictRequest) Generates a prediction for the observation using the specifiedML Model.The SDK service client configuration exposes client settings to the user, e.g., ClientOverrideConfigurationstatic ServiceMetadatadefault UpdateBatchPredictionResponseupdateBatchPrediction(Consumer<UpdateBatchPredictionRequest.Builder> updateBatchPredictionRequest) Updates theBatchPredictionNameof aBatchPrediction.default UpdateBatchPredictionResponseupdateBatchPrediction(UpdateBatchPredictionRequest updateBatchPredictionRequest) Updates theBatchPredictionNameof aBatchPrediction.default UpdateDataSourceResponseupdateDataSource(Consumer<UpdateDataSourceRequest.Builder> updateDataSourceRequest) Updates theDataSourceNameof aDataSource.default UpdateDataSourceResponseupdateDataSource(UpdateDataSourceRequest updateDataSourceRequest) Updates theDataSourceNameof aDataSource.default UpdateEvaluationResponseupdateEvaluation(Consumer<UpdateEvaluationRequest.Builder> updateEvaluationRequest) Updates theEvaluationNameof anEvaluation.default UpdateEvaluationResponseupdateEvaluation(UpdateEvaluationRequest updateEvaluationRequest) Updates theEvaluationNameof anEvaluation.default UpdateMlModelResponseupdateMLModel(Consumer<UpdateMlModelRequest.Builder> updateMlModelRequest) Updates theMLModelNameand theScoreThresholdof anMLModel.default UpdateMlModelResponseupdateMLModel(UpdateMlModelRequest updateMlModelRequest) Updates theMLModelNameand theScoreThresholdof anMLModel.default MachineLearningWaiterwaiter()Create an instance ofMachineLearningWaiterusing this client.Methods inherited from interface software.amazon.awssdk.utils.SdkAutoCloseable
closeMethods inherited from interface software.amazon.awssdk.core.SdkClient
serviceName
-
Field Details
-
SERVICE_NAME
- See Also:
-
SERVICE_METADATA_ID
Value for looking up the service's metadata from theServiceMetadataProvider.- See Also:
-
-
Method Details
-
addTags
default AddTagsResponse addTags(AddTagsRequest addTagsRequest) throws InvalidInputException, InvalidTagException, TagLimitExceededException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Adds one or more tags to an object, up to a limit of 10. Each tag consists of a key and an optional value. If you add a tag using a key that is already associated with the ML object,
AddTagsupdates the tag's value.- Parameters:
addTagsRequest-- Returns:
- Result of the AddTags operation returned by the service.
-
addTags
default AddTagsResponse addTags(Consumer<AddTagsRequest.Builder> addTagsRequest) throws InvalidInputException, InvalidTagException, TagLimitExceededException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Adds one or more tags to an object, up to a limit of 10. Each tag consists of a key and an optional value. If you add a tag using a key that is already associated with the ML object,
AddTagsupdates the tag's value.
This is a convenience which creates an instance of the
AddTagsRequest.Builderavoiding the need to create one manually viaAddTagsRequest.builder()- Parameters:
addTagsRequest- AConsumerthat will call methods onAddTagsRequest.Builderto create a request.- Returns:
- Result of the AddTags operation returned by the service.
-
createBatchPrediction
default CreateBatchPredictionResponse createBatchPrediction(CreateBatchPredictionRequest createBatchPredictionRequest) throws InvalidInputException, InternalServerException, IdempotentParameterMismatchException, AwsServiceException, SdkClientException, MachineLearningException Generates predictions for a group of observations. The observations to process exist in one or more data files referenced by a
DataSource. This operation creates a newBatchPrediction, and uses anMLModeland the data files referenced by theDataSourceas information sources.CreateBatchPredictionis an asynchronous operation. In response toCreateBatchPrediction, Amazon Machine Learning (Amazon ML) immediately returns and sets theBatchPredictionstatus toPENDING. After theBatchPredictioncompletes, Amazon ML sets the status toCOMPLETED.You can poll for status updates by using the GetBatchPrediction operation and checking the
Statusparameter of the result. After theCOMPLETEDstatus appears, the results are available in the location specified by theOutputUriparameter.- Parameters:
createBatchPredictionRequest-- Returns:
- Result of the CreateBatchPrediction operation returned by the service.
-
createBatchPrediction
default CreateBatchPredictionResponse createBatchPrediction(Consumer<CreateBatchPredictionRequest.Builder> createBatchPredictionRequest) throws InvalidInputException, InternalServerException, IdempotentParameterMismatchException, AwsServiceException, SdkClientException, MachineLearningException Generates predictions for a group of observations. The observations to process exist in one or more data files referenced by a
DataSource. This operation creates a newBatchPrediction, and uses anMLModeland the data files referenced by theDataSourceas information sources.CreateBatchPredictionis an asynchronous operation. In response toCreateBatchPrediction, Amazon Machine Learning (Amazon ML) immediately returns and sets theBatchPredictionstatus toPENDING. After theBatchPredictioncompletes, Amazon ML sets the status toCOMPLETED.You can poll for status updates by using the GetBatchPrediction operation and checking the
Statusparameter of the result. After theCOMPLETEDstatus appears, the results are available in the location specified by theOutputUriparameter.
This is a convenience which creates an instance of the
CreateBatchPredictionRequest.Builderavoiding the need to create one manually viaCreateBatchPredictionRequest.builder()- Parameters:
createBatchPredictionRequest- AConsumerthat will call methods onCreateBatchPredictionRequest.Builderto create a request.- Returns:
- Result of the CreateBatchPrediction operation returned by the service.
-
createDataSourceFromRDS
default CreateDataSourceFromRdsResponse createDataSourceFromRDS(CreateDataSourceFromRdsRequest createDataSourceFromRdsRequest) throws InvalidInputException, InternalServerException, IdempotentParameterMismatchException, AwsServiceException, SdkClientException, MachineLearningException Creates a
DataSourceobject from an Amazon Relational Database Service (Amazon RDS). ADataSourcereferences data that can be used to performCreateMLModel,CreateEvaluation, orCreateBatchPredictionoperations.CreateDataSourceFromRDSis an asynchronous operation. In response toCreateDataSourceFromRDS, Amazon Machine Learning (Amazon ML) immediately returns and sets theDataSourcestatus toPENDING. After theDataSourceis created and ready for use, Amazon ML sets theStatusparameter toCOMPLETED.DataSourcein theCOMPLETEDorPENDINGstate can be used only to perform>CreateMLModel>,CreateEvaluation, orCreateBatchPredictionoperations.If Amazon ML cannot accept the input source, it sets the
Statusparameter toFAILEDand includes an error message in theMessageattribute of theGetDataSourceoperation response.- Parameters:
createDataSourceFromRdsRequest-- Returns:
- Result of the CreateDataSourceFromRDS operation returned by the service.
-
createDataSourceFromRDS
default CreateDataSourceFromRdsResponse createDataSourceFromRDS(Consumer<CreateDataSourceFromRdsRequest.Builder> createDataSourceFromRdsRequest) throws InvalidInputException, InternalServerException, IdempotentParameterMismatchException, AwsServiceException, SdkClientException, MachineLearningException Creates a
DataSourceobject from an Amazon Relational Database Service (Amazon RDS). ADataSourcereferences data that can be used to performCreateMLModel,CreateEvaluation, orCreateBatchPredictionoperations.CreateDataSourceFromRDSis an asynchronous operation. In response toCreateDataSourceFromRDS, Amazon Machine Learning (Amazon ML) immediately returns and sets theDataSourcestatus toPENDING. After theDataSourceis created and ready for use, Amazon ML sets theStatusparameter toCOMPLETED.DataSourcein theCOMPLETEDorPENDINGstate can be used only to perform>CreateMLModel>,CreateEvaluation, orCreateBatchPredictionoperations.If Amazon ML cannot accept the input source, it sets the
Statusparameter toFAILEDand includes an error message in theMessageattribute of theGetDataSourceoperation response.
This is a convenience which creates an instance of the
CreateDataSourceFromRdsRequest.Builderavoiding the need to create one manually viaCreateDataSourceFromRdsRequest.builder()- Parameters:
createDataSourceFromRdsRequest- AConsumerthat will call methods onCreateDataSourceFromRdsRequest.Builderto create a request.- Returns:
- Result of the CreateDataSourceFromRDS operation returned by the service.
-
createDataSourceFromRedshift
default CreateDataSourceFromRedshiftResponse createDataSourceFromRedshift(CreateDataSourceFromRedshiftRequest createDataSourceFromRedshiftRequest) throws InvalidInputException, InternalServerException, IdempotentParameterMismatchException, AwsServiceException, SdkClientException, MachineLearningException Creates a
DataSourcefrom a database hosted on an Amazon Redshift cluster. ADataSourcereferences data that can be used to perform eitherCreateMLModel,CreateEvaluation, orCreateBatchPredictionoperations.CreateDataSourceFromRedshiftis an asynchronous operation. In response toCreateDataSourceFromRedshift, Amazon Machine Learning (Amazon ML) immediately returns and sets theDataSourcestatus toPENDING. After theDataSourceis created and ready for use, Amazon ML sets theStatusparameter toCOMPLETED.DataSourceinCOMPLETEDorPENDINGstates can be used to perform onlyCreateMLModel,CreateEvaluation, orCreateBatchPredictionoperations.If Amazon ML can't accept the input source, it sets the
Statusparameter toFAILEDand includes an error message in theMessageattribute of theGetDataSourceoperation response.The observations should be contained in the database hosted on an Amazon Redshift cluster and should be specified by a
SelectSqlQueryquery. Amazon ML executes anUnloadcommand in Amazon Redshift to transfer the result set of theSelectSqlQueryquery toS3StagingLocation.After the
DataSourcehas been created, it's ready for use in evaluations and batch predictions. If you plan to use theDataSourceto train anMLModel, theDataSourcealso requires a recipe. A recipe describes how each input variable will be used in training anMLModel. Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it be combined with another variable or will it be split apart into word combinations? The recipe provides answers to these questions.You can't change an existing datasource, but you can copy and modify the settings from an existing Amazon Redshift datasource to create a new datasource. To do so, call
GetDataSourcefor an existing datasource and copy the values to aCreateDataSourcecall. Change the settings that you want to change and make sure that all required fields have the appropriate values.- Parameters:
createDataSourceFromRedshiftRequest-- Returns:
- Result of the CreateDataSourceFromRedshift operation returned by the service.
-
createDataSourceFromRedshift
default CreateDataSourceFromRedshiftResponse createDataSourceFromRedshift(Consumer<CreateDataSourceFromRedshiftRequest.Builder> createDataSourceFromRedshiftRequest) throws InvalidInputException, InternalServerException, IdempotentParameterMismatchException, AwsServiceException, SdkClientException, MachineLearningException Creates a
DataSourcefrom a database hosted on an Amazon Redshift cluster. ADataSourcereferences data that can be used to perform eitherCreateMLModel,CreateEvaluation, orCreateBatchPredictionoperations.CreateDataSourceFromRedshiftis an asynchronous operation. In response toCreateDataSourceFromRedshift, Amazon Machine Learning (Amazon ML) immediately returns and sets theDataSourcestatus toPENDING. After theDataSourceis created and ready for use, Amazon ML sets theStatusparameter toCOMPLETED.DataSourceinCOMPLETEDorPENDINGstates can be used to perform onlyCreateMLModel,CreateEvaluation, orCreateBatchPredictionoperations.If Amazon ML can't accept the input source, it sets the
Statusparameter toFAILEDand includes an error message in theMessageattribute of theGetDataSourceoperation response.The observations should be contained in the database hosted on an Amazon Redshift cluster and should be specified by a
SelectSqlQueryquery. Amazon ML executes anUnloadcommand in Amazon Redshift to transfer the result set of theSelectSqlQueryquery toS3StagingLocation.After the
DataSourcehas been created, it's ready for use in evaluations and batch predictions. If you plan to use theDataSourceto train anMLModel, theDataSourcealso requires a recipe. A recipe describes how each input variable will be used in training anMLModel. Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it be combined with another variable or will it be split apart into word combinations? The recipe provides answers to these questions.You can't change an existing datasource, but you can copy and modify the settings from an existing Amazon Redshift datasource to create a new datasource. To do so, call
GetDataSourcefor an existing datasource and copy the values to aCreateDataSourcecall. Change the settings that you want to change and make sure that all required fields have the appropriate values.
This is a convenience which creates an instance of the
CreateDataSourceFromRedshiftRequest.Builderavoiding the need to create one manually viaCreateDataSourceFromRedshiftRequest.builder()- Parameters:
createDataSourceFromRedshiftRequest- AConsumerthat will call methods onCreateDataSourceFromRedshiftRequest.Builderto create a request.- Returns:
- Result of the CreateDataSourceFromRedshift operation returned by the service.
-
createDataSourceFromS3
default CreateDataSourceFromS3Response createDataSourceFromS3(CreateDataSourceFromS3Request createDataSourceFromS3Request) throws InvalidInputException, InternalServerException, IdempotentParameterMismatchException, AwsServiceException, SdkClientException, MachineLearningException Creates a
DataSourceobject. ADataSourcereferences data that can be used to performCreateMLModel,CreateEvaluation, orCreateBatchPredictionoperations.CreateDataSourceFromS3is an asynchronous operation. In response toCreateDataSourceFromS3, Amazon Machine Learning (Amazon ML) immediately returns and sets theDataSourcestatus toPENDING. After theDataSourcehas been created and is ready for use, Amazon ML sets theStatusparameter toCOMPLETED.DataSourcein theCOMPLETEDorPENDINGstate can be used to perform onlyCreateMLModel,CreateEvaluationorCreateBatchPredictionoperations.If Amazon ML can't accept the input source, it sets the
Statusparameter toFAILEDand includes an error message in theMessageattribute of theGetDataSourceoperation response.The observation data used in a
DataSourceshould be ready to use; that is, it should have a consistent structure, and missing data values should be kept to a minimum. The observation data must reside in one or more .csv files in an Amazon Simple Storage Service (Amazon S3) location, along with a schema that describes the data items by name and type. The same schema must be used for all of the data files referenced by theDataSource.After the
DataSourcehas been created, it's ready to use in evaluations and batch predictions. If you plan to use theDataSourceto train anMLModel, theDataSourcealso needs a recipe. A recipe describes how each input variable will be used in training anMLModel. Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it be combined with another variable or will it be split apart into word combinations? The recipe provides answers to these questions.- Parameters:
createDataSourceFromS3Request-- Returns:
- Result of the CreateDataSourceFromS3 operation returned by the service.
-
createDataSourceFromS3
default CreateDataSourceFromS3Response createDataSourceFromS3(Consumer<CreateDataSourceFromS3Request.Builder> createDataSourceFromS3Request) throws InvalidInputException, InternalServerException, IdempotentParameterMismatchException, AwsServiceException, SdkClientException, MachineLearningException Creates a
DataSourceobject. ADataSourcereferences data that can be used to performCreateMLModel,CreateEvaluation, orCreateBatchPredictionoperations.CreateDataSourceFromS3is an asynchronous operation. In response toCreateDataSourceFromS3, Amazon Machine Learning (Amazon ML) immediately returns and sets theDataSourcestatus toPENDING. After theDataSourcehas been created and is ready for use, Amazon ML sets theStatusparameter toCOMPLETED.DataSourcein theCOMPLETEDorPENDINGstate can be used to perform onlyCreateMLModel,CreateEvaluationorCreateBatchPredictionoperations.If Amazon ML can't accept the input source, it sets the
Statusparameter toFAILEDand includes an error message in theMessageattribute of theGetDataSourceoperation response.The observation data used in a
DataSourceshould be ready to use; that is, it should have a consistent structure, and missing data values should be kept to a minimum. The observation data must reside in one or more .csv files in an Amazon Simple Storage Service (Amazon S3) location, along with a schema that describes the data items by name and type. The same schema must be used for all of the data files referenced by theDataSource.After the
DataSourcehas been created, it's ready to use in evaluations and batch predictions. If you plan to use theDataSourceto train anMLModel, theDataSourcealso needs a recipe. A recipe describes how each input variable will be used in training anMLModel. Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it be combined with another variable or will it be split apart into word combinations? The recipe provides answers to these questions.
This is a convenience which creates an instance of the
CreateDataSourceFromS3Request.Builderavoiding the need to create one manually viaCreateDataSourceFromS3Request.builder()- Parameters:
createDataSourceFromS3Request- AConsumerthat will call methods onCreateDataSourceFromS3Request.Builderto create a request.- Returns:
- Result of the CreateDataSourceFromS3 operation returned by the service.
-
createEvaluation
default CreateEvaluationResponse createEvaluation(CreateEvaluationRequest createEvaluationRequest) throws InvalidInputException, InternalServerException, IdempotentParameterMismatchException, AwsServiceException, SdkClientException, MachineLearningException Creates a new
Evaluationof anMLModel. AnMLModelis evaluated on a set of observations associated to aDataSource. Like aDataSourcefor anMLModel, theDataSourcefor anEvaluationcontains values for theTarget Variable. TheEvaluationcompares the predicted result for each observation to the actual outcome and provides a summary so that you know how effective theMLModelfunctions on the test data. Evaluation generates a relevant performance metric, such as BinaryAUC, RegressionRMSE or MulticlassAvgFScore based on the correspondingMLModelType:BINARY,REGRESSIONorMULTICLASS.CreateEvaluationis an asynchronous operation. In response toCreateEvaluation, Amazon Machine Learning (Amazon ML) immediately returns and sets the evaluation status toPENDING. After theEvaluationis created and ready for use, Amazon ML sets the status toCOMPLETED.You can use the
GetEvaluationoperation to check progress of the evaluation during the creation operation.- Parameters:
createEvaluationRequest-- Returns:
- Result of the CreateEvaluation operation returned by the service.
-
createEvaluation
default CreateEvaluationResponse createEvaluation(Consumer<CreateEvaluationRequest.Builder> createEvaluationRequest) throws InvalidInputException, InternalServerException, IdempotentParameterMismatchException, AwsServiceException, SdkClientException, MachineLearningException Creates a new
Evaluationof anMLModel. AnMLModelis evaluated on a set of observations associated to aDataSource. Like aDataSourcefor anMLModel, theDataSourcefor anEvaluationcontains values for theTarget Variable. TheEvaluationcompares the predicted result for each observation to the actual outcome and provides a summary so that you know how effective theMLModelfunctions on the test data. Evaluation generates a relevant performance metric, such as BinaryAUC, RegressionRMSE or MulticlassAvgFScore based on the correspondingMLModelType:BINARY,REGRESSIONorMULTICLASS.CreateEvaluationis an asynchronous operation. In response toCreateEvaluation, Amazon Machine Learning (Amazon ML) immediately returns and sets the evaluation status toPENDING. After theEvaluationis created and ready for use, Amazon ML sets the status toCOMPLETED.You can use the
GetEvaluationoperation to check progress of the evaluation during the creation operation.
This is a convenience which creates an instance of the
CreateEvaluationRequest.Builderavoiding the need to create one manually viaCreateEvaluationRequest.builder()- Parameters:
createEvaluationRequest- AConsumerthat will call methods onCreateEvaluationRequest.Builderto create a request.- Returns:
- Result of the CreateEvaluation operation returned by the service.
-
createMLModel
default CreateMlModelResponse createMLModel(CreateMlModelRequest createMlModelRequest) throws InvalidInputException, InternalServerException, IdempotentParameterMismatchException, AwsServiceException, SdkClientException, MachineLearningException Creates a new
MLModelusing theDataSourceand the recipe as information sources.An
MLModelis nearly immutable. Users can update only theMLModelNameand theScoreThresholdin anMLModelwithout creating a newMLModel.CreateMLModelis an asynchronous operation. In response toCreateMLModel, Amazon Machine Learning (Amazon ML) immediately returns and sets theMLModelstatus toPENDING. After theMLModelhas been created and ready is for use, Amazon ML sets the status toCOMPLETED.You can use the
GetMLModeloperation to check the progress of theMLModelduring the creation operation.CreateMLModelrequires aDataSourcewith computed statistics, which can be created by settingComputeStatisticstotrueinCreateDataSourceFromRDS,CreateDataSourceFromS3, orCreateDataSourceFromRedshiftoperations.- Parameters:
createMlModelRequest-- Returns:
- Result of the CreateMLModel operation returned by the service.
-
createMLModel
default CreateMlModelResponse createMLModel(Consumer<CreateMlModelRequest.Builder> createMlModelRequest) throws InvalidInputException, InternalServerException, IdempotentParameterMismatchException, AwsServiceException, SdkClientException, MachineLearningException Creates a new
MLModelusing theDataSourceand the recipe as information sources.An
MLModelis nearly immutable. Users can update only theMLModelNameand theScoreThresholdin anMLModelwithout creating a newMLModel.CreateMLModelis an asynchronous operation. In response toCreateMLModel, Amazon Machine Learning (Amazon ML) immediately returns and sets theMLModelstatus toPENDING. After theMLModelhas been created and ready is for use, Amazon ML sets the status toCOMPLETED.You can use the
GetMLModeloperation to check the progress of theMLModelduring the creation operation.CreateMLModelrequires aDataSourcewith computed statistics, which can be created by settingComputeStatisticstotrueinCreateDataSourceFromRDS,CreateDataSourceFromS3, orCreateDataSourceFromRedshiftoperations.
This is a convenience which creates an instance of the
CreateMlModelRequest.Builderavoiding the need to create one manually viaCreateMlModelRequest.builder()- Parameters:
createMlModelRequest- AConsumerthat will call methods onCreateMlModelRequest.Builderto create a request.- Returns:
- Result of the CreateMLModel operation returned by the service.
-
createRealtimeEndpoint
default CreateRealtimeEndpointResponse createRealtimeEndpoint(CreateRealtimeEndpointRequest createRealtimeEndpointRequest) throws InvalidInputException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Creates a real-time endpoint for the
MLModel. The endpoint contains the URI of theMLModel; that is, the location to send real-time prediction requests for the specifiedMLModel.- Parameters:
createRealtimeEndpointRequest-- Returns:
- Result of the CreateRealtimeEndpoint operation returned by the service.
-
createRealtimeEndpoint
default CreateRealtimeEndpointResponse createRealtimeEndpoint(Consumer<CreateRealtimeEndpointRequest.Builder> createRealtimeEndpointRequest) throws InvalidInputException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Creates a real-time endpoint for the
MLModel. The endpoint contains the URI of theMLModel; that is, the location to send real-time prediction requests for the specifiedMLModel.
This is a convenience which creates an instance of the
CreateRealtimeEndpointRequest.Builderavoiding the need to create one manually viaCreateRealtimeEndpointRequest.builder()- Parameters:
createRealtimeEndpointRequest- AConsumerthat will call methods onCreateRealtimeEndpointRequest.Builderto create a request.- Returns:
- Result of the CreateRealtimeEndpoint operation returned by the service.
-
deleteBatchPrediction
default DeleteBatchPredictionResponse deleteBatchPrediction(DeleteBatchPredictionRequest deleteBatchPredictionRequest) throws InvalidInputException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Assigns the DELETED status to a
BatchPrediction, rendering it unusable.After using the
DeleteBatchPredictionoperation, you can use the GetBatchPrediction operation to verify that the status of theBatchPredictionchanged to DELETED.Caution: The result of the
DeleteBatchPredictionoperation is irreversible.- Parameters:
deleteBatchPredictionRequest-- Returns:
- Result of the DeleteBatchPrediction operation returned by the service.
-
deleteBatchPrediction
default DeleteBatchPredictionResponse deleteBatchPrediction(Consumer<DeleteBatchPredictionRequest.Builder> deleteBatchPredictionRequest) throws InvalidInputException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Assigns the DELETED status to a
BatchPrediction, rendering it unusable.After using the
DeleteBatchPredictionoperation, you can use the GetBatchPrediction operation to verify that the status of theBatchPredictionchanged to DELETED.Caution: The result of the
DeleteBatchPredictionoperation is irreversible.
This is a convenience which creates an instance of the
DeleteBatchPredictionRequest.Builderavoiding the need to create one manually viaDeleteBatchPredictionRequest.builder()- Parameters:
deleteBatchPredictionRequest- AConsumerthat will call methods onDeleteBatchPredictionRequest.Builderto create a request.- Returns:
- Result of the DeleteBatchPrediction operation returned by the service.
-
deleteDataSource
default DeleteDataSourceResponse deleteDataSource(DeleteDataSourceRequest deleteDataSourceRequest) throws InvalidInputException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Assigns the DELETED status to a
DataSource, rendering it unusable.After using the
DeleteDataSourceoperation, you can use the GetDataSource operation to verify that the status of theDataSourcechanged to DELETED.Caution: The results of the
DeleteDataSourceoperation are irreversible.- Parameters:
deleteDataSourceRequest-- Returns:
- Result of the DeleteDataSource operation returned by the service.
-
deleteDataSource
default DeleteDataSourceResponse deleteDataSource(Consumer<DeleteDataSourceRequest.Builder> deleteDataSourceRequest) throws InvalidInputException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Assigns the DELETED status to a
DataSource, rendering it unusable.After using the
DeleteDataSourceoperation, you can use the GetDataSource operation to verify that the status of theDataSourcechanged to DELETED.Caution: The results of the
DeleteDataSourceoperation are irreversible.
This is a convenience which creates an instance of the
DeleteDataSourceRequest.Builderavoiding the need to create one manually viaDeleteDataSourceRequest.builder()- Parameters:
deleteDataSourceRequest- AConsumerthat will call methods onDeleteDataSourceRequest.Builderto create a request.- Returns:
- Result of the DeleteDataSource operation returned by the service.
-
deleteEvaluation
default DeleteEvaluationResponse deleteEvaluation(DeleteEvaluationRequest deleteEvaluationRequest) throws InvalidInputException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Assigns the
DELETEDstatus to anEvaluation, rendering it unusable.After invoking the
DeleteEvaluationoperation, you can use theGetEvaluationoperation to verify that the status of theEvaluationchanged toDELETED.Caution: The results of the
DeleteEvaluationoperation are irreversible.- Parameters:
deleteEvaluationRequest-- Returns:
- Result of the DeleteEvaluation operation returned by the service.
-
deleteEvaluation
default DeleteEvaluationResponse deleteEvaluation(Consumer<DeleteEvaluationRequest.Builder> deleteEvaluationRequest) throws InvalidInputException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Assigns the
DELETEDstatus to anEvaluation, rendering it unusable.After invoking the
DeleteEvaluationoperation, you can use theGetEvaluationoperation to verify that the status of theEvaluationchanged toDELETED.Caution: The results of the
DeleteEvaluationoperation are irreversible.
This is a convenience which creates an instance of the
DeleteEvaluationRequest.Builderavoiding the need to create one manually viaDeleteEvaluationRequest.builder()- Parameters:
deleteEvaluationRequest- AConsumerthat will call methods onDeleteEvaluationRequest.Builderto create a request.- Returns:
- Result of the DeleteEvaluation operation returned by the service.
-
deleteMLModel
default DeleteMlModelResponse deleteMLModel(DeleteMlModelRequest deleteMlModelRequest) throws InvalidInputException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Assigns the
DELETEDstatus to anMLModel, rendering it unusable.After using the
DeleteMLModeloperation, you can use theGetMLModeloperation to verify that the status of theMLModelchanged to DELETED.Caution: The result of the
DeleteMLModeloperation is irreversible.- Parameters:
deleteMlModelRequest-- Returns:
- Result of the DeleteMLModel operation returned by the service.
-
deleteMLModel
default DeleteMlModelResponse deleteMLModel(Consumer<DeleteMlModelRequest.Builder> deleteMlModelRequest) throws InvalidInputException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Assigns the
DELETEDstatus to anMLModel, rendering it unusable.After using the
DeleteMLModeloperation, you can use theGetMLModeloperation to verify that the status of theMLModelchanged to DELETED.Caution: The result of the
DeleteMLModeloperation is irreversible.
This is a convenience which creates an instance of the
DeleteMlModelRequest.Builderavoiding the need to create one manually viaDeleteMlModelRequest.builder()- Parameters:
deleteMlModelRequest- AConsumerthat will call methods onDeleteMlModelRequest.Builderto create a request.- Returns:
- Result of the DeleteMLModel operation returned by the service.
-
deleteRealtimeEndpoint
default DeleteRealtimeEndpointResponse deleteRealtimeEndpoint(DeleteRealtimeEndpointRequest deleteRealtimeEndpointRequest) throws InvalidInputException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Deletes a real time endpoint of an
MLModel.- Parameters:
deleteRealtimeEndpointRequest-- Returns:
- Result of the DeleteRealtimeEndpoint operation returned by the service.
-
deleteRealtimeEndpoint
default DeleteRealtimeEndpointResponse deleteRealtimeEndpoint(Consumer<DeleteRealtimeEndpointRequest.Builder> deleteRealtimeEndpointRequest) throws InvalidInputException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Deletes a real time endpoint of an
MLModel.
This is a convenience which creates an instance of the
DeleteRealtimeEndpointRequest.Builderavoiding the need to create one manually viaDeleteRealtimeEndpointRequest.builder()- Parameters:
deleteRealtimeEndpointRequest- AConsumerthat will call methods onDeleteRealtimeEndpointRequest.Builderto create a request.- Returns:
- Result of the DeleteRealtimeEndpoint operation returned by the service.
-
deleteTags
default DeleteTagsResponse deleteTags(DeleteTagsRequest deleteTagsRequest) throws InvalidInputException, InvalidTagException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Deletes the specified tags associated with an ML object. After this operation is complete, you can't recover deleted tags.
If you specify a tag that doesn't exist, Amazon ML ignores it.
- Parameters:
deleteTagsRequest-- Returns:
- Result of the DeleteTags operation returned by the service.
-
deleteTags
default DeleteTagsResponse deleteTags(Consumer<DeleteTagsRequest.Builder> deleteTagsRequest) throws InvalidInputException, InvalidTagException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Deletes the specified tags associated with an ML object. After this operation is complete, you can't recover deleted tags.
If you specify a tag that doesn't exist, Amazon ML ignores it.
This is a convenience which creates an instance of the
DeleteTagsRequest.Builderavoiding the need to create one manually viaDeleteTagsRequest.builder()- Parameters:
deleteTagsRequest- AConsumerthat will call methods onDeleteTagsRequest.Builderto create a request.- Returns:
- Result of the DeleteTags operation returned by the service.
-
describeBatchPredictions
default DescribeBatchPredictionsResponse describeBatchPredictions(DescribeBatchPredictionsRequest describeBatchPredictionsRequest) throws InvalidInputException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Returns a list of
BatchPredictionoperations that match the search criteria in the request.- Parameters:
describeBatchPredictionsRequest-- Returns:
- Result of the DescribeBatchPredictions operation returned by the service.
-
describeBatchPredictions
default DescribeBatchPredictionsResponse describeBatchPredictions(Consumer<DescribeBatchPredictionsRequest.Builder> describeBatchPredictionsRequest) throws InvalidInputException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Returns a list of
BatchPredictionoperations that match the search criteria in the request.
This is a convenience which creates an instance of the
DescribeBatchPredictionsRequest.Builderavoiding the need to create one manually viaDescribeBatchPredictionsRequest.builder()- Parameters:
describeBatchPredictionsRequest- AConsumerthat will call methods onDescribeBatchPredictionsRequest.Builderto create a request.- Returns:
- Result of the DescribeBatchPredictions operation returned by the service.
-
describeBatchPredictions
default DescribeBatchPredictionsResponse describeBatchPredictions() throws InvalidInputException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningExceptionReturns a list of
BatchPredictionoperations that match the search criteria in the request.- Returns:
- Result of the DescribeBatchPredictions operation returned by the service.
- See Also:
-
describeBatchPredictionsPaginator
default DescribeBatchPredictionsIterable describeBatchPredictionsPaginator() throws InvalidInputException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningExceptionThis is a variant of
describeBatchPredictions(software.amazon.awssdk.services.machinelearning.model.DescribeBatchPredictionsRequest)operation. The return type is a custom iterable that can be used to iterate through all the pages. SDK will internally handle making service calls for you.When this operation is called, a custom iterable is returned but no service calls are made yet. So there is no guarantee that the request is valid. As you iterate through the iterable, SDK will start lazily loading response pages by making service calls until there are no pages left or your iteration stops. If there are errors in your request, you will see the failures only after you start iterating through the iterable.
The following are few ways to iterate through the response pages:
1) Using a Stream
2) Using For loopsoftware.amazon.awssdk.services.machinelearning.paginators.DescribeBatchPredictionsIterable responses = client.describeBatchPredictionsPaginator(request); responses.stream().forEach(....);{ @code software.amazon.awssdk.services.machinelearning.paginators.DescribeBatchPredictionsIterable responses = client .describeBatchPredictionsPaginator(request); for (software.amazon.awssdk.services.machinelearning.model.DescribeBatchPredictionsResponse response : responses) { // do something; } }3) Use iterator directlysoftware.amazon.awssdk.services.machinelearning.paginators.DescribeBatchPredictionsIterable responses = client.describeBatchPredictionsPaginator(request); responses.iterator().forEachRemaining(....);Please notice that the configuration of Limit won't limit the number of results you get with the paginator. It only limits the number of results in each page.
Note: If you prefer to have control on service calls, use the
describeBatchPredictions(software.amazon.awssdk.services.machinelearning.model.DescribeBatchPredictionsRequest)operation.- Returns:
- A custom iterable that can be used to iterate through all the response pages.
- See Also:
-
describeBatchPredictionsPaginator
default DescribeBatchPredictionsIterable describeBatchPredictionsPaginator(DescribeBatchPredictionsRequest describeBatchPredictionsRequest) throws InvalidInputException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException This is a variant of
describeBatchPredictions(software.amazon.awssdk.services.machinelearning.model.DescribeBatchPredictionsRequest)operation. The return type is a custom iterable that can be used to iterate through all the pages. SDK will internally handle making service calls for you.When this operation is called, a custom iterable is returned but no service calls are made yet. So there is no guarantee that the request is valid. As you iterate through the iterable, SDK will start lazily loading response pages by making service calls until there are no pages left or your iteration stops. If there are errors in your request, you will see the failures only after you start iterating through the iterable.
The following are few ways to iterate through the response pages:
1) Using a Stream
2) Using For loopsoftware.amazon.awssdk.services.machinelearning.paginators.DescribeBatchPredictionsIterable responses = client.describeBatchPredictionsPaginator(request); responses.stream().forEach(....);{ @code software.amazon.awssdk.services.machinelearning.paginators.DescribeBatchPredictionsIterable responses = client .describeBatchPredictionsPaginator(request); for (software.amazon.awssdk.services.machinelearning.model.DescribeBatchPredictionsResponse response : responses) { // do something; } }3) Use iterator directlysoftware.amazon.awssdk.services.machinelearning.paginators.DescribeBatchPredictionsIterable responses = client.describeBatchPredictionsPaginator(request); responses.iterator().forEachRemaining(....);Please notice that the configuration of Limit won't limit the number of results you get with the paginator. It only limits the number of results in each page.
Note: If you prefer to have control on service calls, use the
describeBatchPredictions(software.amazon.awssdk.services.machinelearning.model.DescribeBatchPredictionsRequest)operation.- Parameters:
describeBatchPredictionsRequest-- Returns:
- A custom iterable that can be used to iterate through all the response pages.
-
describeBatchPredictionsPaginator
default DescribeBatchPredictionsIterable describeBatchPredictionsPaginator(Consumer<DescribeBatchPredictionsRequest.Builder> describeBatchPredictionsRequest) throws InvalidInputException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException This is a variant of
describeBatchPredictions(software.amazon.awssdk.services.machinelearning.model.DescribeBatchPredictionsRequest)operation. The return type is a custom iterable that can be used to iterate through all the pages. SDK will internally handle making service calls for you.When this operation is called, a custom iterable is returned but no service calls are made yet. So there is no guarantee that the request is valid. As you iterate through the iterable, SDK will start lazily loading response pages by making service calls until there are no pages left or your iteration stops. If there are errors in your request, you will see the failures only after you start iterating through the iterable.
The following are few ways to iterate through the response pages:
1) Using a Stream
2) Using For loopsoftware.amazon.awssdk.services.machinelearning.paginators.DescribeBatchPredictionsIterable responses = client.describeBatchPredictionsPaginator(request); responses.stream().forEach(....);{ @code software.amazon.awssdk.services.machinelearning.paginators.DescribeBatchPredictionsIterable responses = client .describeBatchPredictionsPaginator(request); for (software.amazon.awssdk.services.machinelearning.model.DescribeBatchPredictionsResponse response : responses) { // do something; } }3) Use iterator directlysoftware.amazon.awssdk.services.machinelearning.paginators.DescribeBatchPredictionsIterable responses = client.describeBatchPredictionsPaginator(request); responses.iterator().forEachRemaining(....);Please notice that the configuration of Limit won't limit the number of results you get with the paginator. It only limits the number of results in each page.
Note: If you prefer to have control on service calls, use the
describeBatchPredictions(software.amazon.awssdk.services.machinelearning.model.DescribeBatchPredictionsRequest)operation.
This is a convenience which creates an instance of the
DescribeBatchPredictionsRequest.Builderavoiding the need to create one manually viaDescribeBatchPredictionsRequest.builder()- Parameters:
describeBatchPredictionsRequest- AConsumerthat will call methods onDescribeBatchPredictionsRequest.Builderto create a request.- Returns:
- A custom iterable that can be used to iterate through all the response pages.
-
describeDataSources
default DescribeDataSourcesResponse describeDataSources(DescribeDataSourcesRequest describeDataSourcesRequest) throws InvalidInputException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Returns a list of
DataSourcethat match the search criteria in the request.- Parameters:
describeDataSourcesRequest-- Returns:
- Result of the DescribeDataSources operation returned by the service.
-
describeDataSources
default DescribeDataSourcesResponse describeDataSources(Consumer<DescribeDataSourcesRequest.Builder> describeDataSourcesRequest) throws InvalidInputException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Returns a list of
DataSourcethat match the search criteria in the request.
This is a convenience which creates an instance of the
DescribeDataSourcesRequest.Builderavoiding the need to create one manually viaDescribeDataSourcesRequest.builder()- Parameters:
describeDataSourcesRequest- AConsumerthat will call methods onDescribeDataSourcesRequest.Builderto create a request.- Returns:
- Result of the DescribeDataSources operation returned by the service.
-
describeDataSources
default DescribeDataSourcesResponse describeDataSources() throws InvalidInputException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningExceptionReturns a list of
DataSourcethat match the search criteria in the request.- Returns:
- Result of the DescribeDataSources operation returned by the service.
- See Also:
-
describeDataSourcesPaginator
default DescribeDataSourcesIterable describeDataSourcesPaginator() throws InvalidInputException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningExceptionThis is a variant of
describeDataSources(software.amazon.awssdk.services.machinelearning.model.DescribeDataSourcesRequest)operation. The return type is a custom iterable that can be used to iterate through all the pages. SDK will internally handle making service calls for you.When this operation is called, a custom iterable is returned but no service calls are made yet. So there is no guarantee that the request is valid. As you iterate through the iterable, SDK will start lazily loading response pages by making service calls until there are no pages left or your iteration stops. If there are errors in your request, you will see the failures only after you start iterating through the iterable.
The following are few ways to iterate through the response pages:
1) Using a Stream
2) Using For loopsoftware.amazon.awssdk.services.machinelearning.paginators.DescribeDataSourcesIterable responses = client.describeDataSourcesPaginator(request); responses.stream().forEach(....);{ @code software.amazon.awssdk.services.machinelearning.paginators.DescribeDataSourcesIterable responses = client .describeDataSourcesPaginator(request); for (software.amazon.awssdk.services.machinelearning.model.DescribeDataSourcesResponse response : responses) { // do something; } }3) Use iterator directlysoftware.amazon.awssdk.services.machinelearning.paginators.DescribeDataSourcesIterable responses = client.describeDataSourcesPaginator(request); responses.iterator().forEachRemaining(....);Please notice that the configuration of Limit won't limit the number of results you get with the paginator. It only limits the number of results in each page.
Note: If you prefer to have control on service calls, use the
describeDataSources(software.amazon.awssdk.services.machinelearning.model.DescribeDataSourcesRequest)operation.- Returns:
- A custom iterable that can be used to iterate through all the response pages.
- See Also:
-
describeDataSourcesPaginator
default DescribeDataSourcesIterable describeDataSourcesPaginator(DescribeDataSourcesRequest describeDataSourcesRequest) throws InvalidInputException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException This is a variant of
describeDataSources(software.amazon.awssdk.services.machinelearning.model.DescribeDataSourcesRequest)operation. The return type is a custom iterable that can be used to iterate through all the pages. SDK will internally handle making service calls for you.When this operation is called, a custom iterable is returned but no service calls are made yet. So there is no guarantee that the request is valid. As you iterate through the iterable, SDK will start lazily loading response pages by making service calls until there are no pages left or your iteration stops. If there are errors in your request, you will see the failures only after you start iterating through the iterable.
The following are few ways to iterate through the response pages:
1) Using a Stream
2) Using For loopsoftware.amazon.awssdk.services.machinelearning.paginators.DescribeDataSourcesIterable responses = client.describeDataSourcesPaginator(request); responses.stream().forEach(....);{ @code software.amazon.awssdk.services.machinelearning.paginators.DescribeDataSourcesIterable responses = client .describeDataSourcesPaginator(request); for (software.amazon.awssdk.services.machinelearning.model.DescribeDataSourcesResponse response : responses) { // do something; } }3) Use iterator directlysoftware.amazon.awssdk.services.machinelearning.paginators.DescribeDataSourcesIterable responses = client.describeDataSourcesPaginator(request); responses.iterator().forEachRemaining(....);Please notice that the configuration of Limit won't limit the number of results you get with the paginator. It only limits the number of results in each page.
Note: If you prefer to have control on service calls, use the
describeDataSources(software.amazon.awssdk.services.machinelearning.model.DescribeDataSourcesRequest)operation.- Parameters:
describeDataSourcesRequest-- Returns:
- A custom iterable that can be used to iterate through all the response pages.
-
describeDataSourcesPaginator
default DescribeDataSourcesIterable describeDataSourcesPaginator(Consumer<DescribeDataSourcesRequest.Builder> describeDataSourcesRequest) throws InvalidInputException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException This is a variant of
describeDataSources(software.amazon.awssdk.services.machinelearning.model.DescribeDataSourcesRequest)operation. The return type is a custom iterable that can be used to iterate through all the pages. SDK will internally handle making service calls for you.When this operation is called, a custom iterable is returned but no service calls are made yet. So there is no guarantee that the request is valid. As you iterate through the iterable, SDK will start lazily loading response pages by making service calls until there are no pages left or your iteration stops. If there are errors in your request, you will see the failures only after you start iterating through the iterable.
The following are few ways to iterate through the response pages:
1) Using a Stream
2) Using For loopsoftware.amazon.awssdk.services.machinelearning.paginators.DescribeDataSourcesIterable responses = client.describeDataSourcesPaginator(request); responses.stream().forEach(....);{ @code software.amazon.awssdk.services.machinelearning.paginators.DescribeDataSourcesIterable responses = client .describeDataSourcesPaginator(request); for (software.amazon.awssdk.services.machinelearning.model.DescribeDataSourcesResponse response : responses) { // do something; } }3) Use iterator directlysoftware.amazon.awssdk.services.machinelearning.paginators.DescribeDataSourcesIterable responses = client.describeDataSourcesPaginator(request); responses.iterator().forEachRemaining(....);Please notice that the configuration of Limit won't limit the number of results you get with the paginator. It only limits the number of results in each page.
Note: If you prefer to have control on service calls, use the
describeDataSources(software.amazon.awssdk.services.machinelearning.model.DescribeDataSourcesRequest)operation.
This is a convenience which creates an instance of the
DescribeDataSourcesRequest.Builderavoiding the need to create one manually viaDescribeDataSourcesRequest.builder()- Parameters:
describeDataSourcesRequest- AConsumerthat will call methods onDescribeDataSourcesRequest.Builderto create a request.- Returns:
- A custom iterable that can be used to iterate through all the response pages.
-
describeEvaluations
default DescribeEvaluationsResponse describeEvaluations(DescribeEvaluationsRequest describeEvaluationsRequest) throws InvalidInputException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Returns a list of
DescribeEvaluationsthat match the search criteria in the request.- Parameters:
describeEvaluationsRequest-- Returns:
- Result of the DescribeEvaluations operation returned by the service.
-
describeEvaluations
default DescribeEvaluationsResponse describeEvaluations(Consumer<DescribeEvaluationsRequest.Builder> describeEvaluationsRequest) throws InvalidInputException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Returns a list of
DescribeEvaluationsthat match the search criteria in the request.
This is a convenience which creates an instance of the
DescribeEvaluationsRequest.Builderavoiding the need to create one manually viaDescribeEvaluationsRequest.builder()- Parameters:
describeEvaluationsRequest- AConsumerthat will call methods onDescribeEvaluationsRequest.Builderto create a request.- Returns:
- Result of the DescribeEvaluations operation returned by the service.
-
describeEvaluations
default DescribeEvaluationsResponse describeEvaluations() throws InvalidInputException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningExceptionReturns a list of
DescribeEvaluationsthat match the search criteria in the request.- Returns:
- Result of the DescribeEvaluations operation returned by the service.
- See Also:
-
describeEvaluationsPaginator
default DescribeEvaluationsIterable describeEvaluationsPaginator() throws InvalidInputException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningExceptionThis is a variant of
describeEvaluations(software.amazon.awssdk.services.machinelearning.model.DescribeEvaluationsRequest)operation. The return type is a custom iterable that can be used to iterate through all the pages. SDK will internally handle making service calls for you.When this operation is called, a custom iterable is returned but no service calls are made yet. So there is no guarantee that the request is valid. As you iterate through the iterable, SDK will start lazily loading response pages by making service calls until there are no pages left or your iteration stops. If there are errors in your request, you will see the failures only after you start iterating through the iterable.
The following are few ways to iterate through the response pages:
1) Using a Stream
2) Using For loopsoftware.amazon.awssdk.services.machinelearning.paginators.DescribeEvaluationsIterable responses = client.describeEvaluationsPaginator(request); responses.stream().forEach(....);{ @code software.amazon.awssdk.services.machinelearning.paginators.DescribeEvaluationsIterable responses = client .describeEvaluationsPaginator(request); for (software.amazon.awssdk.services.machinelearning.model.DescribeEvaluationsResponse response : responses) { // do something; } }3) Use iterator directlysoftware.amazon.awssdk.services.machinelearning.paginators.DescribeEvaluationsIterable responses = client.describeEvaluationsPaginator(request); responses.iterator().forEachRemaining(....);Please notice that the configuration of Limit won't limit the number of results you get with the paginator. It only limits the number of results in each page.
Note: If you prefer to have control on service calls, use the
describeEvaluations(software.amazon.awssdk.services.machinelearning.model.DescribeEvaluationsRequest)operation.- Returns:
- A custom iterable that can be used to iterate through all the response pages.
- See Also:
-
describeEvaluationsPaginator
default DescribeEvaluationsIterable describeEvaluationsPaginator(DescribeEvaluationsRequest describeEvaluationsRequest) throws InvalidInputException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException This is a variant of
describeEvaluations(software.amazon.awssdk.services.machinelearning.model.DescribeEvaluationsRequest)operation. The return type is a custom iterable that can be used to iterate through all the pages. SDK will internally handle making service calls for you.When this operation is called, a custom iterable is returned but no service calls are made yet. So there is no guarantee that the request is valid. As you iterate through the iterable, SDK will start lazily loading response pages by making service calls until there are no pages left or your iteration stops. If there are errors in your request, you will see the failures only after you start iterating through the iterable.
The following are few ways to iterate through the response pages:
1) Using a Stream
2) Using For loopsoftware.amazon.awssdk.services.machinelearning.paginators.DescribeEvaluationsIterable responses = client.describeEvaluationsPaginator(request); responses.stream().forEach(....);{ @code software.amazon.awssdk.services.machinelearning.paginators.DescribeEvaluationsIterable responses = client .describeEvaluationsPaginator(request); for (software.amazon.awssdk.services.machinelearning.model.DescribeEvaluationsResponse response : responses) { // do something; } }3) Use iterator directlysoftware.amazon.awssdk.services.machinelearning.paginators.DescribeEvaluationsIterable responses = client.describeEvaluationsPaginator(request); responses.iterator().forEachRemaining(....);Please notice that the configuration of Limit won't limit the number of results you get with the paginator. It only limits the number of results in each page.
Note: If you prefer to have control on service calls, use the
describeEvaluations(software.amazon.awssdk.services.machinelearning.model.DescribeEvaluationsRequest)operation.- Parameters:
describeEvaluationsRequest-- Returns:
- A custom iterable that can be used to iterate through all the response pages.
-
describeEvaluationsPaginator
default DescribeEvaluationsIterable describeEvaluationsPaginator(Consumer<DescribeEvaluationsRequest.Builder> describeEvaluationsRequest) throws InvalidInputException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException This is a variant of
describeEvaluations(software.amazon.awssdk.services.machinelearning.model.DescribeEvaluationsRequest)operation. The return type is a custom iterable that can be used to iterate through all the pages. SDK will internally handle making service calls for you.When this operation is called, a custom iterable is returned but no service calls are made yet. So there is no guarantee that the request is valid. As you iterate through the iterable, SDK will start lazily loading response pages by making service calls until there are no pages left or your iteration stops. If there are errors in your request, you will see the failures only after you start iterating through the iterable.
The following are few ways to iterate through the response pages:
1) Using a Stream
2) Using For loopsoftware.amazon.awssdk.services.machinelearning.paginators.DescribeEvaluationsIterable responses = client.describeEvaluationsPaginator(request); responses.stream().forEach(....);{ @code software.amazon.awssdk.services.machinelearning.paginators.DescribeEvaluationsIterable responses = client .describeEvaluationsPaginator(request); for (software.amazon.awssdk.services.machinelearning.model.DescribeEvaluationsResponse response : responses) { // do something; } }3) Use iterator directlysoftware.amazon.awssdk.services.machinelearning.paginators.DescribeEvaluationsIterable responses = client.describeEvaluationsPaginator(request); responses.iterator().forEachRemaining(....);Please notice that the configuration of Limit won't limit the number of results you get with the paginator. It only limits the number of results in each page.
Note: If you prefer to have control on service calls, use the
describeEvaluations(software.amazon.awssdk.services.machinelearning.model.DescribeEvaluationsRequest)operation.
This is a convenience which creates an instance of the
DescribeEvaluationsRequest.Builderavoiding the need to create one manually viaDescribeEvaluationsRequest.builder()- Parameters:
describeEvaluationsRequest- AConsumerthat will call methods onDescribeEvaluationsRequest.Builderto create a request.- Returns:
- A custom iterable that can be used to iterate through all the response pages.
-
describeMLModels
default DescribeMlModelsResponse describeMLModels(DescribeMlModelsRequest describeMlModelsRequest) throws InvalidInputException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Returns a list of
MLModelthat match the search criteria in the request.- Parameters:
describeMlModelsRequest-- Returns:
- Result of the DescribeMLModels operation returned by the service.
-
describeMLModels
default DescribeMlModelsResponse describeMLModels(Consumer<DescribeMlModelsRequest.Builder> describeMlModelsRequest) throws InvalidInputException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Returns a list of
MLModelthat match the search criteria in the request.
This is a convenience which creates an instance of the
DescribeMlModelsRequest.Builderavoiding the need to create one manually viaDescribeMlModelsRequest.builder()- Parameters:
describeMlModelsRequest- AConsumerthat will call methods onDescribeMlModelsRequest.Builderto create a request.- Returns:
- Result of the DescribeMLModels operation returned by the service.
-
describeMLModels
default DescribeMlModelsResponse describeMLModels() throws InvalidInputException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningExceptionReturns a list of
MLModelthat match the search criteria in the request.- Returns:
- Result of the DescribeMLModels operation returned by the service.
- See Also:
-
describeMLModelsPaginator
default DescribeMLModelsIterable describeMLModelsPaginator() throws InvalidInputException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningExceptionThis is a variant of
describeMLModels(software.amazon.awssdk.services.machinelearning.model.DescribeMlModelsRequest)operation. The return type is a custom iterable that can be used to iterate through all the pages. SDK will internally handle making service calls for you.When this operation is called, a custom iterable is returned but no service calls are made yet. So there is no guarantee that the request is valid. As you iterate through the iterable, SDK will start lazily loading response pages by making service calls until there are no pages left or your iteration stops. If there are errors in your request, you will see the failures only after you start iterating through the iterable.
The following are few ways to iterate through the response pages:
1) Using a Stream
2) Using For loopsoftware.amazon.awssdk.services.machinelearning.paginators.DescribeMLModelsIterable responses = client.describeMLModelsPaginator(request); responses.stream().forEach(....);{ @code software.amazon.awssdk.services.machinelearning.paginators.DescribeMLModelsIterable responses = client .describeMLModelsPaginator(request); for (software.amazon.awssdk.services.machinelearning.model.DescribeMlModelsResponse response : responses) { // do something; } }3) Use iterator directlysoftware.amazon.awssdk.services.machinelearning.paginators.DescribeMLModelsIterable responses = client.describeMLModelsPaginator(request); responses.iterator().forEachRemaining(....);Please notice that the configuration of Limit won't limit the number of results you get with the paginator. It only limits the number of results in each page.
Note: If you prefer to have control on service calls, use the
describeMLModels(software.amazon.awssdk.services.machinelearning.model.DescribeMlModelsRequest)operation.- Returns:
- A custom iterable that can be used to iterate through all the response pages.
- See Also:
-
describeMLModelsPaginator
default DescribeMLModelsIterable describeMLModelsPaginator(DescribeMlModelsRequest describeMlModelsRequest) throws InvalidInputException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException This is a variant of
describeMLModels(software.amazon.awssdk.services.machinelearning.model.DescribeMlModelsRequest)operation. The return type is a custom iterable that can be used to iterate through all the pages. SDK will internally handle making service calls for you.When this operation is called, a custom iterable is returned but no service calls are made yet. So there is no guarantee that the request is valid. As you iterate through the iterable, SDK will start lazily loading response pages by making service calls until there are no pages left or your iteration stops. If there are errors in your request, you will see the failures only after you start iterating through the iterable.
The following are few ways to iterate through the response pages:
1) Using a Stream
2) Using For loopsoftware.amazon.awssdk.services.machinelearning.paginators.DescribeMLModelsIterable responses = client.describeMLModelsPaginator(request); responses.stream().forEach(....);{ @code software.amazon.awssdk.services.machinelearning.paginators.DescribeMLModelsIterable responses = client .describeMLModelsPaginator(request); for (software.amazon.awssdk.services.machinelearning.model.DescribeMlModelsResponse response : responses) { // do something; } }3) Use iterator directlysoftware.amazon.awssdk.services.machinelearning.paginators.DescribeMLModelsIterable responses = client.describeMLModelsPaginator(request); responses.iterator().forEachRemaining(....);Please notice that the configuration of Limit won't limit the number of results you get with the paginator. It only limits the number of results in each page.
Note: If you prefer to have control on service calls, use the
describeMLModels(software.amazon.awssdk.services.machinelearning.model.DescribeMlModelsRequest)operation.- Parameters:
describeMlModelsRequest-- Returns:
- A custom iterable that can be used to iterate through all the response pages.
-
describeMLModelsPaginator
default DescribeMLModelsIterable describeMLModelsPaginator(Consumer<DescribeMlModelsRequest.Builder> describeMlModelsRequest) throws InvalidInputException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException This is a variant of
describeMLModels(software.amazon.awssdk.services.machinelearning.model.DescribeMlModelsRequest)operation. The return type is a custom iterable that can be used to iterate through all the pages. SDK will internally handle making service calls for you.When this operation is called, a custom iterable is returned but no service calls are made yet. So there is no guarantee that the request is valid. As you iterate through the iterable, SDK will start lazily loading response pages by making service calls until there are no pages left or your iteration stops. If there are errors in your request, you will see the failures only after you start iterating through the iterable.
The following are few ways to iterate through the response pages:
1) Using a Stream
2) Using For loopsoftware.amazon.awssdk.services.machinelearning.paginators.DescribeMLModelsIterable responses = client.describeMLModelsPaginator(request); responses.stream().forEach(....);{ @code software.amazon.awssdk.services.machinelearning.paginators.DescribeMLModelsIterable responses = client .describeMLModelsPaginator(request); for (software.amazon.awssdk.services.machinelearning.model.DescribeMlModelsResponse response : responses) { // do something; } }3) Use iterator directlysoftware.amazon.awssdk.services.machinelearning.paginators.DescribeMLModelsIterable responses = client.describeMLModelsPaginator(request); responses.iterator().forEachRemaining(....);Please notice that the configuration of Limit won't limit the number of results you get with the paginator. It only limits the number of results in each page.
Note: If you prefer to have control on service calls, use the
describeMLModels(software.amazon.awssdk.services.machinelearning.model.DescribeMlModelsRequest)operation.
This is a convenience which creates an instance of the
DescribeMlModelsRequest.Builderavoiding the need to create one manually viaDescribeMlModelsRequest.builder()- Parameters:
describeMlModelsRequest- AConsumerthat will call methods onDescribeMlModelsRequest.Builderto create a request.- Returns:
- A custom iterable that can be used to iterate through all the response pages.
-
describeTags
default DescribeTagsResponse describeTags(DescribeTagsRequest describeTagsRequest) throws InvalidInputException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Describes one or more of the tags for your Amazon ML object.
- Parameters:
describeTagsRequest-- Returns:
- Result of the DescribeTags operation returned by the service.
-
describeTags
default DescribeTagsResponse describeTags(Consumer<DescribeTagsRequest.Builder> describeTagsRequest) throws InvalidInputException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Describes one or more of the tags for your Amazon ML object.
This is a convenience which creates an instance of the
DescribeTagsRequest.Builderavoiding the need to create one manually viaDescribeTagsRequest.builder()- Parameters:
describeTagsRequest- AConsumerthat will call methods onDescribeTagsRequest.Builderto create a request.- Returns:
- Result of the DescribeTags operation returned by the service.
-
getBatchPrediction
default GetBatchPredictionResponse getBatchPrediction(GetBatchPredictionRequest getBatchPredictionRequest) throws InvalidInputException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Returns a
BatchPredictionthat includes detailed metadata, status, and data file information for aBatch Predictionrequest.- Parameters:
getBatchPredictionRequest-- Returns:
- Result of the GetBatchPrediction operation returned by the service.
-
getBatchPrediction
default GetBatchPredictionResponse getBatchPrediction(Consumer<GetBatchPredictionRequest.Builder> getBatchPredictionRequest) throws InvalidInputException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Returns a
BatchPredictionthat includes detailed metadata, status, and data file information for aBatch Predictionrequest.
This is a convenience which creates an instance of the
GetBatchPredictionRequest.Builderavoiding the need to create one manually viaGetBatchPredictionRequest.builder()- Parameters:
getBatchPredictionRequest- AConsumerthat will call methods onGetBatchPredictionRequest.Builderto create a request.- Returns:
- Result of the GetBatchPrediction operation returned by the service.
-
getDataSource
default GetDataSourceResponse getDataSource(GetDataSourceRequest getDataSourceRequest) throws InvalidInputException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Returns a
DataSourcethat includes metadata and data file information, as well as the current status of theDataSource.GetDataSourceprovides results in normal or verbose format. The verbose format adds the schema description and the list of files pointed to by the DataSource to the normal format.- Parameters:
getDataSourceRequest-- Returns:
- Result of the GetDataSource operation returned by the service.
-
getDataSource
default GetDataSourceResponse getDataSource(Consumer<GetDataSourceRequest.Builder> getDataSourceRequest) throws InvalidInputException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Returns a
DataSourcethat includes metadata and data file information, as well as the current status of theDataSource.GetDataSourceprovides results in normal or verbose format. The verbose format adds the schema description and the list of files pointed to by the DataSource to the normal format.
This is a convenience which creates an instance of the
GetDataSourceRequest.Builderavoiding the need to create one manually viaGetDataSourceRequest.builder()- Parameters:
getDataSourceRequest- AConsumerthat will call methods onGetDataSourceRequest.Builderto create a request.- Returns:
- Result of the GetDataSource operation returned by the service.
-
getEvaluation
default GetEvaluationResponse getEvaluation(GetEvaluationRequest getEvaluationRequest) throws InvalidInputException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Returns an
Evaluationthat includes metadata as well as the current status of theEvaluation.- Parameters:
getEvaluationRequest-- Returns:
- Result of the GetEvaluation operation returned by the service.
-
getEvaluation
default GetEvaluationResponse getEvaluation(Consumer<GetEvaluationRequest.Builder> getEvaluationRequest) throws InvalidInputException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Returns an
Evaluationthat includes metadata as well as the current status of theEvaluation.
This is a convenience which creates an instance of the
GetEvaluationRequest.Builderavoiding the need to create one manually viaGetEvaluationRequest.builder()- Parameters:
getEvaluationRequest- AConsumerthat will call methods onGetEvaluationRequest.Builderto create a request.- Returns:
- Result of the GetEvaluation operation returned by the service.
-
getMLModel
default GetMlModelResponse getMLModel(GetMlModelRequest getMlModelRequest) throws InvalidInputException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Returns an
MLModelthat includes detailed metadata, data source information, and the current status of theMLModel.GetMLModelprovides results in normal or verbose format.- Parameters:
getMlModelRequest-- Returns:
- Result of the GetMLModel operation returned by the service.
-
getMLModel
default GetMlModelResponse getMLModel(Consumer<GetMlModelRequest.Builder> getMlModelRequest) throws InvalidInputException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Returns an
MLModelthat includes detailed metadata, data source information, and the current status of theMLModel.GetMLModelprovides results in normal or verbose format.
This is a convenience which creates an instance of the
GetMlModelRequest.Builderavoiding the need to create one manually viaGetMlModelRequest.builder()- Parameters:
getMlModelRequest- AConsumerthat will call methods onGetMlModelRequest.Builderto create a request.- Returns:
- Result of the GetMLModel operation returned by the service.
-
predict
default PredictResponse predict(PredictRequest predictRequest) throws InvalidInputException, ResourceNotFoundException, LimitExceededException, InternalServerException, PredictorNotMountedException, AwsServiceException, SdkClientException, MachineLearningException Generates a prediction for the observation using the specified
ML Model.Note: Not all response parameters will be populated. Whether a response parameter is populated depends on the type of model requested.
- Parameters:
predictRequest-- Returns:
- Result of the Predict operation returned by the service.
-
predict
default PredictResponse predict(Consumer<PredictRequest.Builder> predictRequest) throws InvalidInputException, ResourceNotFoundException, LimitExceededException, InternalServerException, PredictorNotMountedException, AwsServiceException, SdkClientException, MachineLearningException Generates a prediction for the observation using the specified
ML Model.Note: Not all response parameters will be populated. Whether a response parameter is populated depends on the type of model requested.
This is a convenience which creates an instance of the
PredictRequest.Builderavoiding the need to create one manually viaPredictRequest.builder()- Parameters:
predictRequest- AConsumerthat will call methods onPredictRequest.Builderto create a request.- Returns:
- Result of the Predict operation returned by the service.
-
updateBatchPrediction
default UpdateBatchPredictionResponse updateBatchPrediction(UpdateBatchPredictionRequest updateBatchPredictionRequest) throws InvalidInputException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Updates the
BatchPredictionNameof aBatchPrediction.You can use the
GetBatchPredictionoperation to view the contents of the updated data element.- Parameters:
updateBatchPredictionRequest-- Returns:
- Result of the UpdateBatchPrediction operation returned by the service.
-
updateBatchPrediction
default UpdateBatchPredictionResponse updateBatchPrediction(Consumer<UpdateBatchPredictionRequest.Builder> updateBatchPredictionRequest) throws InvalidInputException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Updates the
BatchPredictionNameof aBatchPrediction.You can use the
GetBatchPredictionoperation to view the contents of the updated data element.
This is a convenience which creates an instance of the
UpdateBatchPredictionRequest.Builderavoiding the need to create one manually viaUpdateBatchPredictionRequest.builder()- Parameters:
updateBatchPredictionRequest- AConsumerthat will call methods onUpdateBatchPredictionRequest.Builderto create a request.- Returns:
- Result of the UpdateBatchPrediction operation returned by the service.
-
updateDataSource
default UpdateDataSourceResponse updateDataSource(UpdateDataSourceRequest updateDataSourceRequest) throws InvalidInputException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Updates the
DataSourceNameof aDataSource.You can use the
GetDataSourceoperation to view the contents of the updated data element.- Parameters:
updateDataSourceRequest-- Returns:
- Result of the UpdateDataSource operation returned by the service.
-
updateDataSource
default UpdateDataSourceResponse updateDataSource(Consumer<UpdateDataSourceRequest.Builder> updateDataSourceRequest) throws InvalidInputException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Updates the
DataSourceNameof aDataSource.You can use the
GetDataSourceoperation to view the contents of the updated data element.
This is a convenience which creates an instance of the
UpdateDataSourceRequest.Builderavoiding the need to create one manually viaUpdateDataSourceRequest.builder()- Parameters:
updateDataSourceRequest- AConsumerthat will call methods onUpdateDataSourceRequest.Builderto create a request.- Returns:
- Result of the UpdateDataSource operation returned by the service.
-
updateEvaluation
default UpdateEvaluationResponse updateEvaluation(UpdateEvaluationRequest updateEvaluationRequest) throws InvalidInputException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Updates the
EvaluationNameof anEvaluation.You can use the
GetEvaluationoperation to view the contents of the updated data element.- Parameters:
updateEvaluationRequest-- Returns:
- Result of the UpdateEvaluation operation returned by the service.
-
updateEvaluation
default UpdateEvaluationResponse updateEvaluation(Consumer<UpdateEvaluationRequest.Builder> updateEvaluationRequest) throws InvalidInputException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Updates the
EvaluationNameof anEvaluation.You can use the
GetEvaluationoperation to view the contents of the updated data element.
This is a convenience which creates an instance of the
UpdateEvaluationRequest.Builderavoiding the need to create one manually viaUpdateEvaluationRequest.builder()- Parameters:
updateEvaluationRequest- AConsumerthat will call methods onUpdateEvaluationRequest.Builderto create a request.- Returns:
- Result of the UpdateEvaluation operation returned by the service.
-
updateMLModel
default UpdateMlModelResponse updateMLModel(UpdateMlModelRequest updateMlModelRequest) throws InvalidInputException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Updates the
MLModelNameand theScoreThresholdof anMLModel.You can use the
GetMLModeloperation to view the contents of the updated data element.- Parameters:
updateMlModelRequest-- Returns:
- Result of the UpdateMLModel operation returned by the service.
-
updateMLModel
default UpdateMlModelResponse updateMLModel(Consumer<UpdateMlModelRequest.Builder> updateMlModelRequest) throws InvalidInputException, ResourceNotFoundException, InternalServerException, AwsServiceException, SdkClientException, MachineLearningException Updates the
MLModelNameand theScoreThresholdof anMLModel.You can use the
GetMLModeloperation to view the contents of the updated data element.
This is a convenience which creates an instance of the
UpdateMlModelRequest.Builderavoiding the need to create one manually viaUpdateMlModelRequest.builder()- Parameters:
updateMlModelRequest- AConsumerthat will call methods onUpdateMlModelRequest.Builderto create a request.- Returns:
- Result of the UpdateMLModel operation returned by the service.
-
waiter
Create an instance ofMachineLearningWaiterusing this client.Waiters created via this method are managed by the SDK and resources will be released when the service client is closed.
- Returns:
- an instance of
MachineLearningWaiter
-
create
Create aMachineLearningClientwith the region loaded from theDefaultAwsRegionProviderChainand credentials loaded from theDefaultCredentialsProvider. -
builder
Create a builder that can be used to configure and create aMachineLearningClient. -
serviceMetadata
-
serviceClientConfiguration
Description copied from interface:SdkClientThe SDK service client configuration exposes client settings to the user, e.g., ClientOverrideConfiguration- Specified by:
serviceClientConfigurationin interfaceAwsClient- Specified by:
serviceClientConfigurationin interfaceSdkClient- Returns:
- SdkServiceClientConfiguration
-