Interface CreateAutoMlJobV2Request.Builder
- All Superinterfaces:
AwsRequest.Builder
,Buildable
,CopyableBuilder<CreateAutoMlJobV2Request.Builder,
,CreateAutoMlJobV2Request> SageMakerRequest.Builder
,SdkBuilder<CreateAutoMlJobV2Request.Builder,
,CreateAutoMlJobV2Request> SdkPojo
,SdkRequest.Builder
- Enclosing class:
CreateAutoMlJobV2Request
-
Method Summary
Modifier and TypeMethodDescriptiondefault CreateAutoMlJobV2Request.Builder
autoMLComputeConfig
(Consumer<AutoMLComputeConfig.Builder> autoMLComputeConfig) Specifies the compute configuration for the AutoML job V2.autoMLComputeConfig
(AutoMLComputeConfig autoMLComputeConfig) Specifies the compute configuration for the AutoML job V2.autoMLJobInputDataConfig
(Collection<AutoMLJobChannel> autoMLJobInputDataConfig) An array of channel objects describing the input data and their location.autoMLJobInputDataConfig
(Consumer<AutoMLJobChannel.Builder>... autoMLJobInputDataConfig) An array of channel objects describing the input data and their location.autoMLJobInputDataConfig
(AutoMLJobChannel... autoMLJobInputDataConfig) An array of channel objects describing the input data and their location.autoMLJobName
(String autoMLJobName) Identifies an Autopilot job.default CreateAutoMlJobV2Request.Builder
autoMLJobObjective
(Consumer<AutoMLJobObjective.Builder> autoMLJobObjective) Specifies a metric to minimize or maximize as the objective of a job.autoMLJobObjective
(AutoMLJobObjective autoMLJobObjective) Specifies a metric to minimize or maximize as the objective of a job.default CreateAutoMlJobV2Request.Builder
autoMLProblemTypeConfig
(Consumer<AutoMLProblemTypeConfig.Builder> autoMLProblemTypeConfig) Defines the configuration settings of one of the supported problem types.autoMLProblemTypeConfig
(AutoMLProblemTypeConfig autoMLProblemTypeConfig) Defines the configuration settings of one of the supported problem types.default CreateAutoMlJobV2Request.Builder
dataSplitConfig
(Consumer<AutoMLDataSplitConfig.Builder> dataSplitConfig) This structure specifies how to split the data into train and validation datasets.dataSplitConfig
(AutoMLDataSplitConfig dataSplitConfig) This structure specifies how to split the data into train and validation datasets.default CreateAutoMlJobV2Request.Builder
modelDeployConfig
(Consumer<ModelDeployConfig.Builder> modelDeployConfig) Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.modelDeployConfig
(ModelDeployConfig modelDeployConfig) Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.default CreateAutoMlJobV2Request.Builder
outputDataConfig
(Consumer<AutoMLOutputDataConfig.Builder> outputDataConfig) Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.outputDataConfig
(AutoMLOutputDataConfig outputDataConfig) Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.overrideConfiguration
(Consumer<AwsRequestOverrideConfiguration.Builder> builderConsumer) Add an optional request override configuration.overrideConfiguration
(AwsRequestOverrideConfiguration overrideConfiguration) Add an optional request override configuration.The ARN of the role that is used to access the data.default CreateAutoMlJobV2Request.Builder
securityConfig
(Consumer<AutoMLSecurityConfig.Builder> securityConfig) The security configuration for traffic encryption or Amazon VPC settings.securityConfig
(AutoMLSecurityConfig securityConfig) The security configuration for traffic encryption or Amazon VPC settings.tags
(Collection<Tag> tags) An array of key-value pairs.tags
(Consumer<Tag.Builder>... tags) An array of key-value pairs.An array of key-value pairs.Methods inherited from interface software.amazon.awssdk.awscore.AwsRequest.Builder
overrideConfiguration
Methods inherited from interface software.amazon.awssdk.utils.builder.CopyableBuilder
copy
Methods inherited from interface software.amazon.awssdk.services.sagemaker.model.SageMakerRequest.Builder
build
Methods inherited from interface software.amazon.awssdk.utils.builder.SdkBuilder
applyMutation, build
Methods inherited from interface software.amazon.awssdk.core.SdkPojo
equalsBySdkFields, sdkFields
-
Method Details
-
autoMLJobName
Identifies an Autopilot job. The name must be unique to your account and is case insensitive.
- Parameters:
autoMLJobName
- Identifies an Autopilot job. The name must be unique to your account and is case insensitive.- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
autoMLJobInputDataConfig
CreateAutoMlJobV2Request.Builder autoMLJobInputDataConfig(Collection<AutoMLJobChannel> autoMLJobInputDataConfig) An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the InputDataConfig attribute in the
CreateAutoMLJob
input parameters. The supported formats depend on the problem type:-
For tabular problem types:
S3Prefix
,ManifestFile
. -
For image classification:
S3Prefix
,ManifestFile
,AugmentedManifestFile
. -
For text classification:
S3Prefix
. -
For time-series forecasting:
S3Prefix
. -
For text generation (LLMs fine-tuning):
S3Prefix
.
- Parameters:
autoMLJobInputDataConfig
- An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the InputDataConfig attribute in theCreateAutoMLJob
input parameters. The supported formats depend on the problem type:-
For tabular problem types:
S3Prefix
,ManifestFile
. -
For image classification:
S3Prefix
,ManifestFile
,AugmentedManifestFile
. -
For text classification:
S3Prefix
. -
For time-series forecasting:
S3Prefix
. -
For text generation (LLMs fine-tuning):
S3Prefix
.
-
- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
-
autoMLJobInputDataConfig
CreateAutoMlJobV2Request.Builder autoMLJobInputDataConfig(AutoMLJobChannel... autoMLJobInputDataConfig) An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the InputDataConfig attribute in the
CreateAutoMLJob
input parameters. The supported formats depend on the problem type:-
For tabular problem types:
S3Prefix
,ManifestFile
. -
For image classification:
S3Prefix
,ManifestFile
,AugmentedManifestFile
. -
For text classification:
S3Prefix
. -
For time-series forecasting:
S3Prefix
. -
For text generation (LLMs fine-tuning):
S3Prefix
.
- Parameters:
autoMLJobInputDataConfig
- An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the InputDataConfig attribute in theCreateAutoMLJob
input parameters. The supported formats depend on the problem type:-
For tabular problem types:
S3Prefix
,ManifestFile
. -
For image classification:
S3Prefix
,ManifestFile
,AugmentedManifestFile
. -
For text classification:
S3Prefix
. -
For time-series forecasting:
S3Prefix
. -
For text generation (LLMs fine-tuning):
S3Prefix
.
-
- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
-
autoMLJobInputDataConfig
CreateAutoMlJobV2Request.Builder autoMLJobInputDataConfig(Consumer<AutoMLJobChannel.Builder>... autoMLJobInputDataConfig) An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the InputDataConfig attribute in the
CreateAutoMLJob
input parameters. The supported formats depend on the problem type:-
For tabular problem types:
S3Prefix
,ManifestFile
. -
For image classification:
S3Prefix
,ManifestFile
,AugmentedManifestFile
. -
For text classification:
S3Prefix
. -
For time-series forecasting:
S3Prefix
. -
For text generation (LLMs fine-tuning):
S3Prefix
.
AutoMLJobChannel.Builder
avoiding the need to create one manually viaAutoMLJobChannel.builder()
.When the
Consumer
completes,SdkBuilder.build()
is called immediately and its result is passed toautoMLJobInputDataConfig(List<AutoMLJobChannel>)
.- Parameters:
autoMLJobInputDataConfig
- a consumer that will call methods onAutoMLJobChannel.Builder
- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
-
-
outputDataConfig
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.
- Parameters:
outputDataConfig
- Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
outputDataConfig
default CreateAutoMlJobV2Request.Builder outputDataConfig(Consumer<AutoMLOutputDataConfig.Builder> outputDataConfig) Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.
This is a convenience method that creates an instance of theAutoMLOutputDataConfig.Builder
avoiding the need to create one manually viaAutoMLOutputDataConfig.builder()
.When the
Consumer
completes,SdkBuilder.build()
is called immediately and its result is passed tooutputDataConfig(AutoMLOutputDataConfig)
.- Parameters:
outputDataConfig
- a consumer that will call methods onAutoMLOutputDataConfig.Builder
- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
-
autoMLProblemTypeConfig
CreateAutoMlJobV2Request.Builder autoMLProblemTypeConfig(AutoMLProblemTypeConfig autoMLProblemTypeConfig) Defines the configuration settings of one of the supported problem types.
- Parameters:
autoMLProblemTypeConfig
- Defines the configuration settings of one of the supported problem types.- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
autoMLProblemTypeConfig
default CreateAutoMlJobV2Request.Builder autoMLProblemTypeConfig(Consumer<AutoMLProblemTypeConfig.Builder> autoMLProblemTypeConfig) Defines the configuration settings of one of the supported problem types.
This is a convenience method that creates an instance of theAutoMLProblemTypeConfig.Builder
avoiding the need to create one manually viaAutoMLProblemTypeConfig.builder()
.When the
Consumer
completes,SdkBuilder.build()
is called immediately and its result is passed toautoMLProblemTypeConfig(AutoMLProblemTypeConfig)
.- Parameters:
autoMLProblemTypeConfig
- a consumer that will call methods onAutoMLProblemTypeConfig.Builder
- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
-
roleArn
The ARN of the role that is used to access the data.
- Parameters:
roleArn
- The ARN of the role that is used to access the data.- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
tags
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
- Parameters:
tags
- An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
tags
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
- Parameters:
tags
- An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
tags
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
This is a convenience method that creates an instance of theTag.Builder
avoiding the need to create one manually viaTag.builder()
.When the
Consumer
completes,SdkBuilder.build()
is called immediately and its result is passed totags(List<Tag>)
.- Parameters:
tags
- a consumer that will call methods onTag.Builder
- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
-
securityConfig
The security configuration for traffic encryption or Amazon VPC settings.
- Parameters:
securityConfig
- The security configuration for traffic encryption or Amazon VPC settings.- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
securityConfig
default CreateAutoMlJobV2Request.Builder securityConfig(Consumer<AutoMLSecurityConfig.Builder> securityConfig) The security configuration for traffic encryption or Amazon VPC settings.
This is a convenience method that creates an instance of theAutoMLSecurityConfig.Builder
avoiding the need to create one manually viaAutoMLSecurityConfig.builder()
.When the
Consumer
completes,SdkBuilder.build()
is called immediately and its result is passed tosecurityConfig(AutoMLSecurityConfig)
.- Parameters:
securityConfig
- a consumer that will call methods onAutoMLSecurityConfig.Builder
- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
-
autoMLJobObjective
Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. For the list of default values per problem type, see AutoMLJobObjective.
-
For tabular problem types: You must either provide both the
AutoMLJobObjective
and indicate the type of supervised learning problem inAutoMLProblemTypeConfig
(TabularJobConfig.ProblemType
), or none at all. -
For text generation problem types (LLMs fine-tuning): Fine-tuning language models in Autopilot does not require setting the
AutoMLJobObjective
field. Autopilot fine-tunes LLMs without requiring multiple candidates to be trained and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a default objective metric, the cross-entropy loss. After fine-tuning a language model, you can evaluate the quality of its generated text using different metrics. For a list of the available metrics, see Metrics for fine-tuning LLMs in Autopilot.
- Parameters:
autoMLJobObjective
- Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. For the list of default values per problem type, see AutoMLJobObjective.-
For tabular problem types: You must either provide both the
AutoMLJobObjective
and indicate the type of supervised learning problem inAutoMLProblemTypeConfig
(TabularJobConfig.ProblemType
), or none at all. -
For text generation problem types (LLMs fine-tuning): Fine-tuning language models in Autopilot does not require setting the
AutoMLJobObjective
field. Autopilot fine-tunes LLMs without requiring multiple candidates to be trained and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a default objective metric, the cross-entropy loss. After fine-tuning a language model, you can evaluate the quality of its generated text using different metrics. For a list of the available metrics, see Metrics for fine-tuning LLMs in Autopilot.
-
- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
-
autoMLJobObjective
default CreateAutoMlJobV2Request.Builder autoMLJobObjective(Consumer<AutoMLJobObjective.Builder> autoMLJobObjective) Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. For the list of default values per problem type, see AutoMLJobObjective.
-
For tabular problem types: You must either provide both the
AutoMLJobObjective
and indicate the type of supervised learning problem inAutoMLProblemTypeConfig
(TabularJobConfig.ProblemType
), or none at all. -
For text generation problem types (LLMs fine-tuning): Fine-tuning language models in Autopilot does not require setting the
AutoMLJobObjective
field. Autopilot fine-tunes LLMs without requiring multiple candidates to be trained and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a default objective metric, the cross-entropy loss. After fine-tuning a language model, you can evaluate the quality of its generated text using different metrics. For a list of the available metrics, see Metrics for fine-tuning LLMs in Autopilot.
AutoMLJobObjective.Builder
avoiding the need to create one manually viaAutoMLJobObjective.builder()
.When the
Consumer
completes,SdkBuilder.build()
is called immediately and its result is passed toautoMLJobObjective(AutoMLJobObjective)
.- Parameters:
autoMLJobObjective
- a consumer that will call methods onAutoMLJobObjective.Builder
- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
-
-
modelDeployConfig
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
- Parameters:
modelDeployConfig
- Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
modelDeployConfig
default CreateAutoMlJobV2Request.Builder modelDeployConfig(Consumer<ModelDeployConfig.Builder> modelDeployConfig) Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
This is a convenience method that creates an instance of theModelDeployConfig.Builder
avoiding the need to create one manually viaModelDeployConfig.builder()
.When the
Consumer
completes,SdkBuilder.build()
is called immediately and its result is passed tomodelDeployConfig(ModelDeployConfig)
.- Parameters:
modelDeployConfig
- a consumer that will call methods onModelDeployConfig.Builder
- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
-
dataSplitConfig
This structure specifies how to split the data into train and validation datasets.
The validation and training datasets must contain the same headers. For jobs created by calling
CreateAutoMLJob
, the validation dataset must be less than 2 GB in size.This attribute must not be set for the time-series forecasting problem type, as Autopilot automatically splits the input dataset into training and validation sets.
- Parameters:
dataSplitConfig
- This structure specifies how to split the data into train and validation datasets.The validation and training datasets must contain the same headers. For jobs created by calling
CreateAutoMLJob
, the validation dataset must be less than 2 GB in size.This attribute must not be set for the time-series forecasting problem type, as Autopilot automatically splits the input dataset into training and validation sets.
- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
dataSplitConfig
default CreateAutoMlJobV2Request.Builder dataSplitConfig(Consumer<AutoMLDataSplitConfig.Builder> dataSplitConfig) This structure specifies how to split the data into train and validation datasets.
The validation and training datasets must contain the same headers. For jobs created by calling
CreateAutoMLJob
, the validation dataset must be less than 2 GB in size.This attribute must not be set for the time-series forecasting problem type, as Autopilot automatically splits the input dataset into training and validation sets.
AutoMLDataSplitConfig.Builder
avoiding the need to create one manually viaAutoMLDataSplitConfig.builder()
.When the
Consumer
completes,SdkBuilder.build()
is called immediately and its result is passed todataSplitConfig(AutoMLDataSplitConfig)
.- Parameters:
dataSplitConfig
- a consumer that will call methods onAutoMLDataSplitConfig.Builder
- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
-
autoMLComputeConfig
Specifies the compute configuration for the AutoML job V2.
- Parameters:
autoMLComputeConfig
- Specifies the compute configuration for the AutoML job V2.- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
autoMLComputeConfig
default CreateAutoMlJobV2Request.Builder autoMLComputeConfig(Consumer<AutoMLComputeConfig.Builder> autoMLComputeConfig) Specifies the compute configuration for the AutoML job V2.
This is a convenience method that creates an instance of theAutoMLComputeConfig.Builder
avoiding the need to create one manually viaAutoMLComputeConfig.builder()
.When the
Consumer
completes,SdkBuilder.build()
is called immediately and its result is passed toautoMLComputeConfig(AutoMLComputeConfig)
.- Parameters:
autoMLComputeConfig
- a consumer that will call methods onAutoMLComputeConfig.Builder
- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
-
overrideConfiguration
CreateAutoMlJobV2Request.Builder overrideConfiguration(AwsRequestOverrideConfiguration overrideConfiguration) Description copied from interface:AwsRequest.Builder
Add an optional request override configuration.- Specified by:
overrideConfiguration
in interfaceAwsRequest.Builder
- Parameters:
overrideConfiguration
- The override configuration.- Returns:
- This object for method chaining.
-
overrideConfiguration
CreateAutoMlJobV2Request.Builder overrideConfiguration(Consumer<AwsRequestOverrideConfiguration.Builder> builderConsumer) Description copied from interface:AwsRequest.Builder
Add an optional request override configuration.- Specified by:
overrideConfiguration
in interfaceAwsRequest.Builder
- Parameters:
builderConsumer
- AConsumer
to which an emptyAwsRequestOverrideConfiguration.Builder
will be given.- Returns:
- This object for method chaining.
-