Class SignRequest

All Implemented Interfaces:
SdkPojo, ToCopyableBuilder<SignRequest.Builder,SignRequest>

@Generated("software.amazon.awssdk:codegen") public final class SignRequest extends KmsRequest implements ToCopyableBuilder<SignRequest.Builder,SignRequest>
  • Method Details

    • keyId

      public final String keyId()

      Identifies an asymmetric KMS key. KMS uses the private key in the asymmetric KMS key to sign the message. The KeyUsage type of the KMS key must be SIGN_VERIFY. To find the KeyUsage of a KMS key, use the DescribeKey operation.

      To specify a KMS key, use its key ID, key ARN, alias name, or alias ARN. When using an alias name, prefix it with "alias/". To specify a KMS key in a different Amazon Web Services account, you must use the key ARN or alias ARN.

      For example:

      • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

      • Key ARN: arn:aws:kms:us-east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

      • Alias name: alias/ExampleAlias

      • Alias ARN: arn:aws:kms:us-east-2:111122223333:alias/ExampleAlias

      To get the key ID and key ARN for a KMS key, use ListKeys or DescribeKey. To get the alias name and alias ARN, use ListAliases.

      Returns:
      Identifies an asymmetric KMS key. KMS uses the private key in the asymmetric KMS key to sign the message. The KeyUsage type of the KMS key must be SIGN_VERIFY. To find the KeyUsage of a KMS key, use the DescribeKey operation.

      To specify a KMS key, use its key ID, key ARN, alias name, or alias ARN. When using an alias name, prefix it with "alias/". To specify a KMS key in a different Amazon Web Services account, you must use the key ARN or alias ARN.

      For example:

      • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

      • Key ARN: arn:aws:kms:us-east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

      • Alias name: alias/ExampleAlias

      • Alias ARN: arn:aws:kms:us-east-2:111122223333:alias/ExampleAlias

      To get the key ID and key ARN for a KMS key, use ListKeys or DescribeKey. To get the alias name and alias ARN, use ListAliases.

    • message

      public final SdkBytes message()

      Specifies the message or message digest to sign. Messages can be 0-4096 bytes. To sign a larger message, provide a message digest.

      If you provide a message digest, use the DIGEST value of MessageType to prevent the digest from being hashed again while signing.

      Returns:
      Specifies the message or message digest to sign. Messages can be 0-4096 bytes. To sign a larger message, provide a message digest.

      If you provide a message digest, use the DIGEST value of MessageType to prevent the digest from being hashed again while signing.

    • messageType

      public final MessageType messageType()

      Tells KMS whether the value of the Message parameter should be hashed as part of the signing algorithm. Use RAW for unhashed messages; use DIGEST for message digests, which are already hashed.

      When the value of MessageType is RAW, KMS uses the standard signing algorithm, which begins with a hash function. When the value is DIGEST, KMS skips the hashing step in the signing algorithm.

      Use the DIGEST value only when the value of the Message parameter is a message digest. If you use the DIGEST value with an unhashed message, the security of the signing operation can be compromised.

      When the value of MessageTypeis DIGEST, the length of the Message value must match the length of hashed messages for the specified signing algorithm.

      You can submit a message digest and omit the MessageType or specify RAW so the digest is hashed again while signing. However, this can cause verification failures when verifying with a system that assumes a single hash.

      The hashing algorithm in that Sign uses is based on the SigningAlgorithm value.

      • Signing algorithms that end in SHA_256 use the SHA_256 hashing algorithm.

      • Signing algorithms that end in SHA_384 use the SHA_384 hashing algorithm.

      • Signing algorithms that end in SHA_512 use the SHA_512 hashing algorithm.

      • SM2DSA uses the SM3 hashing algorithm. For details, see Offline verification with SM2 key pairs.

      If the service returns an enum value that is not available in the current SDK version, messageType will return MessageType.UNKNOWN_TO_SDK_VERSION. The raw value returned by the service is available from messageTypeAsString().

      Returns:
      Tells KMS whether the value of the Message parameter should be hashed as part of the signing algorithm. Use RAW for unhashed messages; use DIGEST for message digests, which are already hashed.

      When the value of MessageType is RAW, KMS uses the standard signing algorithm, which begins with a hash function. When the value is DIGEST, KMS skips the hashing step in the signing algorithm.

      Use the DIGEST value only when the value of the Message parameter is a message digest. If you use the DIGEST value with an unhashed message, the security of the signing operation can be compromised.

      When the value of MessageTypeis DIGEST, the length of the Message value must match the length of hashed messages for the specified signing algorithm.

      You can submit a message digest and omit the MessageType or specify RAW so the digest is hashed again while signing. However, this can cause verification failures when verifying with a system that assumes a single hash.

      The hashing algorithm in that Sign uses is based on the SigningAlgorithm value.

      • Signing algorithms that end in SHA_256 use the SHA_256 hashing algorithm.

      • Signing algorithms that end in SHA_384 use the SHA_384 hashing algorithm.

      • Signing algorithms that end in SHA_512 use the SHA_512 hashing algorithm.

      • SM2DSA uses the SM3 hashing algorithm. For details, see Offline verification with SM2 key pairs.

      See Also:
    • messageTypeAsString

      public final String messageTypeAsString()

      Tells KMS whether the value of the Message parameter should be hashed as part of the signing algorithm. Use RAW for unhashed messages; use DIGEST for message digests, which are already hashed.

      When the value of MessageType is RAW, KMS uses the standard signing algorithm, which begins with a hash function. When the value is DIGEST, KMS skips the hashing step in the signing algorithm.

      Use the DIGEST value only when the value of the Message parameter is a message digest. If you use the DIGEST value with an unhashed message, the security of the signing operation can be compromised.

      When the value of MessageTypeis DIGEST, the length of the Message value must match the length of hashed messages for the specified signing algorithm.

      You can submit a message digest and omit the MessageType or specify RAW so the digest is hashed again while signing. However, this can cause verification failures when verifying with a system that assumes a single hash.

      The hashing algorithm in that Sign uses is based on the SigningAlgorithm value.

      • Signing algorithms that end in SHA_256 use the SHA_256 hashing algorithm.

      • Signing algorithms that end in SHA_384 use the SHA_384 hashing algorithm.

      • Signing algorithms that end in SHA_512 use the SHA_512 hashing algorithm.

      • SM2DSA uses the SM3 hashing algorithm. For details, see Offline verification with SM2 key pairs.

      If the service returns an enum value that is not available in the current SDK version, messageType will return MessageType.UNKNOWN_TO_SDK_VERSION. The raw value returned by the service is available from messageTypeAsString().

      Returns:
      Tells KMS whether the value of the Message parameter should be hashed as part of the signing algorithm. Use RAW for unhashed messages; use DIGEST for message digests, which are already hashed.

      When the value of MessageType is RAW, KMS uses the standard signing algorithm, which begins with a hash function. When the value is DIGEST, KMS skips the hashing step in the signing algorithm.

      Use the DIGEST value only when the value of the Message parameter is a message digest. If you use the DIGEST value with an unhashed message, the security of the signing operation can be compromised.

      When the value of MessageTypeis DIGEST, the length of the Message value must match the length of hashed messages for the specified signing algorithm.

      You can submit a message digest and omit the MessageType or specify RAW so the digest is hashed again while signing. However, this can cause verification failures when verifying with a system that assumes a single hash.

      The hashing algorithm in that Sign uses is based on the SigningAlgorithm value.

      • Signing algorithms that end in SHA_256 use the SHA_256 hashing algorithm.

      • Signing algorithms that end in SHA_384 use the SHA_384 hashing algorithm.

      • Signing algorithms that end in SHA_512 use the SHA_512 hashing algorithm.

      • SM2DSA uses the SM3 hashing algorithm. For details, see Offline verification with SM2 key pairs.

      See Also:
    • hasGrantTokens

      public final boolean hasGrantTokens()
      For responses, this returns true if the service returned a value for the GrantTokens property. This DOES NOT check that the value is non-empty (for which, you should check the isEmpty() method on the property). This is useful because the SDK will never return a null collection or map, but you may need to differentiate between the service returning nothing (or null) and the service returning an empty collection or map. For requests, this returns true if a value for the property was specified in the request builder, and false if a value was not specified.
    • grantTokens

      public final List<String> grantTokens()

      A list of grant tokens.

      Use a grant token when your permission to call this operation comes from a new grant that has not yet achieved eventual consistency. For more information, see Grant token and Using a grant token in the Key Management Service Developer Guide.

      Attempts to modify the collection returned by this method will result in an UnsupportedOperationException.

      This method will never return null. If you would like to know whether the service returned this field (so that you can differentiate between null and empty), you can use the hasGrantTokens() method.

      Returns:
      A list of grant tokens.

      Use a grant token when your permission to call this operation comes from a new grant that has not yet achieved eventual consistency. For more information, see Grant token and Using a grant token in the Key Management Service Developer Guide.

    • signingAlgorithm

      public final SigningAlgorithmSpec signingAlgorithm()

      Specifies the signing algorithm to use when signing the message.

      Choose an algorithm that is compatible with the type and size of the specified asymmetric KMS key. When signing with RSA key pairs, RSASSA-PSS algorithms are preferred. We include RSASSA-PKCS1-v1_5 algorithms for compatibility with existing applications.

      If the service returns an enum value that is not available in the current SDK version, signingAlgorithm will return SigningAlgorithmSpec.UNKNOWN_TO_SDK_VERSION. The raw value returned by the service is available from signingAlgorithmAsString().

      Returns:
      Specifies the signing algorithm to use when signing the message.

      Choose an algorithm that is compatible with the type and size of the specified asymmetric KMS key. When signing with RSA key pairs, RSASSA-PSS algorithms are preferred. We include RSASSA-PKCS1-v1_5 algorithms for compatibility with existing applications.

      See Also:
    • signingAlgorithmAsString

      public final String signingAlgorithmAsString()

      Specifies the signing algorithm to use when signing the message.

      Choose an algorithm that is compatible with the type and size of the specified asymmetric KMS key. When signing with RSA key pairs, RSASSA-PSS algorithms are preferred. We include RSASSA-PKCS1-v1_5 algorithms for compatibility with existing applications.

      If the service returns an enum value that is not available in the current SDK version, signingAlgorithm will return SigningAlgorithmSpec.UNKNOWN_TO_SDK_VERSION. The raw value returned by the service is available from signingAlgorithmAsString().

      Returns:
      Specifies the signing algorithm to use when signing the message.

      Choose an algorithm that is compatible with the type and size of the specified asymmetric KMS key. When signing with RSA key pairs, RSASSA-PSS algorithms are preferred. We include RSASSA-PKCS1-v1_5 algorithms for compatibility with existing applications.

      See Also:
    • dryRun

      public final Boolean dryRun()

      Checks if your request will succeed. DryRun is an optional parameter.

      To learn more about how to use this parameter, see Testing your KMS API calls in the Key Management Service Developer Guide.

      Returns:
      Checks if your request will succeed. DryRun is an optional parameter.

      To learn more about how to use this parameter, see Testing your KMS API calls in the Key Management Service Developer Guide.

    • toBuilder

      public SignRequest.Builder toBuilder()
      Description copied from interface: ToCopyableBuilder
      Take this object and create a builder that contains all of the current property values of this object.
      Specified by:
      toBuilder in interface ToCopyableBuilder<SignRequest.Builder,SignRequest>
      Specified by:
      toBuilder in class KmsRequest
      Returns:
      a builder for type T
    • builder

      public static SignRequest.Builder builder()
    • serializableBuilderClass

      public static Class<? extends SignRequest.Builder> serializableBuilderClass()
    • hashCode

      public final int hashCode()
      Overrides:
      hashCode in class AwsRequest
    • equals

      public final boolean equals(Object obj)
      Overrides:
      equals in class AwsRequest
    • equalsBySdkFields

      public final boolean equalsBySdkFields(Object obj)
      Description copied from interface: SdkPojo
      Indicates whether some other object is "equal to" this one by SDK fields. An SDK field is a modeled, non-inherited field in an SdkPojo class, and is generated based on a service model.

      If an SdkPojo class does not have any inherited fields, equalsBySdkFields and equals are essentially the same.

      Specified by:
      equalsBySdkFields in interface SdkPojo
      Parameters:
      obj - the object to be compared with
      Returns:
      true if the other object equals to this object by sdk fields, false otherwise.
    • toString

      public final String toString()
      Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be redacted from this string using a placeholder value.
      Overrides:
      toString in class Object
    • getValueForField

      public final <T> Optional<T> getValueForField(String fieldName, Class<T> clazz)
      Description copied from class: SdkRequest
      Used to retrieve the value of a field from any class that extends SdkRequest. The field name specified should match the member name from the corresponding service-2.json model specified in the codegen-resources folder for a given service. The class specifies what class to cast the returned value to. If the returned value is also a modeled class, the SdkRequest.getValueForField(String, Class) method will again be available.
      Overrides:
      getValueForField in class SdkRequest
      Parameters:
      fieldName - The name of the member to be retrieved.
      clazz - The class to cast the returned object to.
      Returns:
      Optional containing the casted return value
    • sdkFields

      public final List<SdkField<?>> sdkFields()
      Specified by:
      sdkFields in interface SdkPojo
      Returns:
      List of SdkField in this POJO. May be empty list but should never be null.