public static interface CreateMlModelRequest.Builder extends MachineLearningRequest.Builder, CopyableBuilder<CreateMlModelRequest.Builder,CreateMlModelRequest>
| Modifier and Type | Method and Description | 
|---|---|
CreateMlModelRequest.Builder | 
mlModelId(String mlModelId)
 A user-supplied ID that uniquely identifies the  
MLModel. | 
CreateMlModelRequest.Builder | 
mlModelName(String mlModelName)
 A user-supplied name or description of the  
MLModel. | 
CreateMlModelRequest.Builder | 
mlModelType(MLModelType mlModelType)
 The category of supervised learning that this  
MLModel will address. | 
CreateMlModelRequest.Builder | 
mlModelType(String mlModelType)
 The category of supervised learning that this  
MLModel will address. | 
CreateMlModelRequest.Builder | 
overrideConfiguration(AwsRequestOverrideConfiguration overrideConfiguration)
Add an optional request override configuration. 
 | 
CreateMlModelRequest.Builder | 
overrideConfiguration(Consumer<AwsRequestOverrideConfiguration.Builder> builderConsumer)
Add an optional request override configuration. 
 | 
CreateMlModelRequest.Builder | 
parameters(Map<String,String> parameters)
 A list of the training parameters in the  
MLModel. | 
CreateMlModelRequest.Builder | 
recipe(String recipe)
 The data recipe for creating the  
MLModel. | 
CreateMlModelRequest.Builder | 
recipeUri(String recipeUri)
 The Amazon Simple Storage Service (Amazon S3) location and file name that contains the  
MLModel
 recipe. | 
CreateMlModelRequest.Builder | 
trainingDataSourceId(String trainingDataSourceId)
 The  
DataSource that points to the training data. | 
buildoverrideConfigurationcopyapplyMutation, buildCreateMlModelRequest.Builder mlModelId(String mlModelId)
 A user-supplied ID that uniquely identifies the MLModel.
 
mlModelId - A user-supplied ID that uniquely identifies the MLModel.CreateMlModelRequest.Builder mlModelName(String mlModelName)
 A user-supplied name or description of the MLModel.
 
mlModelName - A user-supplied name or description of the MLModel.CreateMlModelRequest.Builder mlModelType(String mlModelType)
 The category of supervised learning that this MLModel will address. Choose from the following
 types:
 
REGRESSION if the MLModel will be used to predict a numeric value.BINARY if the MLModel result has two possible values.MULTICLASS if the MLModel result has a limited number of values.For more information, see the Amazon Machine Learning Developer Guide.
mlModelType - The category of supervised learning that this MLModel will address. Choose from the
        following types:
        REGRESSION if the MLModel will be used to predict a numeric
        value.BINARY if the MLModel result has two possible values.MULTICLASS if the MLModel result has a limited number of values.For more information, see the Amazon Machine Learning Developer Guide.
MLModelType, 
MLModelTypeCreateMlModelRequest.Builder mlModelType(MLModelType mlModelType)
 The category of supervised learning that this MLModel will address. Choose from the following
 types:
 
REGRESSION if the MLModel will be used to predict a numeric value.BINARY if the MLModel result has two possible values.MULTICLASS if the MLModel result has a limited number of values.For more information, see the Amazon Machine Learning Developer Guide.
mlModelType - The category of supervised learning that this MLModel will address. Choose from the
        following types:
        REGRESSION if the MLModel will be used to predict a numeric
        value.BINARY if the MLModel result has two possible values.MULTICLASS if the MLModel result has a limited number of values.For more information, see the Amazon Machine Learning Developer Guide.
MLModelType, 
MLModelTypeCreateMlModelRequest.Builder parameters(Map<String,String> parameters)
 A list of the training parameters in the MLModel. The list is implemented as a map of key-value
 pairs.
 
The following is the current set of training parameters:
 sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending on the input data,
 the size of the model might affect its performance.
 
 The value is an integer that ranges from 100000 to 2147483648. The default value is
 33554432.
 
 sgd.maxPasses - The number of times that the training process traverses the observations to
 build the MLModel. The value is an integer that ranges from 1 to 10000
 . The default value is 10.
 
 sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling the data improves a
 model's ability to find the optimal solution for a variety of data types. The valid values are
 auto and none. The default value is none. We strongly recommend that you shuffle your
 data.
 
 sgd.l1RegularizationAmount - The coefficient regularization L1 norm. It controls overfitting the
 data by penalizing large coefficients. This tends to drive coefficients to zero, resulting in a sparse
 feature set. If you use this parameter, start by specifying a small value, such as 1.0E-08.
 
 The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use
 L1 normalization. This parameter can't be used when L2 is specified. Use this parameter
 sparingly.
 
 sgd.l2RegularizationAmount - The coefficient regularization L2 norm. It controls overfitting the
 data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use
 this parameter, start by specifying a small value, such as 1.0E-08.
 
 The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use
 L2 normalization. This parameter can't be used when L1 is specified. Use this parameter
 sparingly.
 
parameters - A list of the training parameters in the MLModel. The list is implemented as a map of
        key-value pairs.
        The following is the current set of training parameters:
        sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending on the input
        data, the size of the model might affect its performance.
        
        The value is an integer that ranges from 100000 to 2147483648. The default
        value is 33554432.
        
        sgd.maxPasses - The number of times that the training process traverses the observations
        to build the MLModel. The value is an integer that ranges from 1 to
        10000. The default value is 10.
        
        sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling the data
        improves a model's ability to find the optimal solution for a variety of data types. The valid values
        are auto and none. The default value is none. We
        strongly recommend that you
        shuffle your data.
        
        sgd.l1RegularizationAmount - The coefficient regularization L1 norm. It controls
        overfitting the data by penalizing large coefficients. This tends to drive coefficients to zero,
        resulting in a sparse feature set. If you use this parameter, start by specifying a small value, such
        as 1.0E-08.
        
        The value is a double that ranges from 0 to MAX_DOUBLE. The default is to
        not use L1 normalization. This parameter can't be used when L2 is specified. Use this
        parameter sparingly.
        
        sgd.l2RegularizationAmount - The coefficient regularization L2 norm. It controls
        overfitting the data by penalizing large coefficients. This tends to drive coefficients to small,
        nonzero values. If you use this parameter, start by specifying a small value, such as
        1.0E-08.
        
        The value is a double that ranges from 0 to MAX_DOUBLE. The default is to
        not use L2 normalization. This parameter can't be used when L1 is specified. Use this
        parameter sparingly.
        
CreateMlModelRequest.Builder trainingDataSourceId(String trainingDataSourceId)
 The DataSource that points to the training data.
 
trainingDataSourceId - The DataSource that points to the training data.CreateMlModelRequest.Builder recipe(String recipe)
 The data recipe for creating the MLModel. You must specify either the recipe or its URI. If you
 don't specify a recipe or its URI, Amazon ML creates a default.
 
recipe - The data recipe for creating the MLModel. You must specify either the recipe or its URI.
        If you don't specify a recipe or its URI, Amazon ML creates a default.CreateMlModelRequest.Builder recipeUri(String recipeUri)
 The Amazon Simple Storage Service (Amazon S3) location and file name that contains the MLModel
 recipe. You must specify either the recipe or its URI. If you don't specify a recipe or its URI, Amazon ML
 creates a default.
 
recipeUri - The Amazon Simple Storage Service (Amazon S3) location and file name that contains the
        MLModel recipe. You must specify either the recipe or its URI. If you don't specify a
        recipe or its URI, Amazon ML creates a default.CreateMlModelRequest.Builder overrideConfiguration(AwsRequestOverrideConfiguration overrideConfiguration)
AwsRequest.BuilderoverrideConfiguration in interface AwsRequest.BuilderoverrideConfiguration - The override configuration.CreateMlModelRequest.Builder overrideConfiguration(Consumer<AwsRequestOverrideConfiguration.Builder> builderConsumer)
AwsRequest.BuilderoverrideConfiguration in interface AwsRequest.BuilderbuilderConsumer - A Consumer to which an empty AwsRequestOverrideConfiguration.Builder will be
 given.Copyright © 2017 Amazon Web Services, Inc. All Rights Reserved.