AWS SDK for C++
0.14.3
AWS SDK for C++
|
#include <MachineLearningClient.h>
Public Types | |
typedef Aws::Client::AWSJsonClient | BASECLASS |
![]() | |
typedef AWSClient | BASECLASS |
Definition of the public APIs exposed by Amazon Machine Learning
Definition at line 218 of file MachineLearningClient.h.
Definition at line 221 of file MachineLearningClient.h.
Aws::MachineLearning::MachineLearningClient::MachineLearningClient | ( | const Client::ClientConfiguration & | clientConfiguration = Client::ClientConfiguration() | ) |
Initializes client to use DefaultCredentialProviderChain, with default http client factory, and optional client config. If client config is not specified, it will be initialized to default values.
Aws::MachineLearning::MachineLearningClient::MachineLearningClient | ( | const Auth::AWSCredentials & | credentials, |
const Client::ClientConfiguration & | clientConfiguration = Client::ClientConfiguration() |
||
) |
Initializes client to use SimpleAWSCredentialsProvider, with default http client factory, and optional client config. If client config is not specified, it will be initialized to default values.
Aws::MachineLearning::MachineLearningClient::MachineLearningClient | ( | const std::shared_ptr< Auth::AWSCredentialsProvider > & | credentialsProvider, |
const Client::ClientConfiguration & | clientConfiguration = Client::ClientConfiguration() |
||
) |
Initializes client to use specified credentials provider with specified client config. If http client factory is not supplied, the default http client factory will be used
|
virtual |
|
virtual |
Adds one or more tags to an object, up to a limit of 10. Each tag consists of a key and an optional value. If you add a tag using a key that is already associated with the ML object, AddTags
updates the tag's value.
|
virtual |
Adds one or more tags to an object, up to a limit of 10. Each tag consists of a key and an optional value. If you add a tag using a key that is already associated with the ML object, AddTags
updates the tag's value.
Queues the request into a thread executor and triggers associated callback when operation has finished.
|
virtual |
Adds one or more tags to an object, up to a limit of 10. Each tag consists of a key and an optional value. If you add a tag using a key that is already associated with the ML object, AddTags
updates the tag's value.
returns a future to the operation so that it can be executed in parallel to other requests.
|
virtual |
Generates predictions for a group of observations. The observations to process exist in one or more data files referenced by a DataSource
. This operation creates a new BatchPrediction
, and uses an MLModel
and the data files referenced by the DataSource
as information sources.
CreateBatchPrediction
is an asynchronous operation. In response to CreateBatchPrediction
, Amazon Machine Learning (Amazon ML) immediately returns and sets the BatchPrediction
status to PENDING
. After the BatchPrediction
completes, Amazon ML sets the status to COMPLETED
.
You can poll for status updates by using the GetBatchPrediction operation and checking the Status
parameter of the result. After the COMPLETED
status appears, the results are available in the location specified by the OutputUri
parameter.
|
virtual |
Generates predictions for a group of observations. The observations to process exist in one or more data files referenced by a DataSource
. This operation creates a new BatchPrediction
, and uses an MLModel
and the data files referenced by the DataSource
as information sources.
CreateBatchPrediction
is an asynchronous operation. In response to CreateBatchPrediction
, Amazon Machine Learning (Amazon ML) immediately returns and sets the BatchPrediction
status to PENDING
. After the BatchPrediction
completes, Amazon ML sets the status to COMPLETED
.
You can poll for status updates by using the GetBatchPrediction operation and checking the Status
parameter of the result. After the COMPLETED
status appears, the results are available in the location specified by the OutputUri
parameter.
Queues the request into a thread executor and triggers associated callback when operation has finished.
|
virtual |
Generates predictions for a group of observations. The observations to process exist in one or more data files referenced by a DataSource
. This operation creates a new BatchPrediction
, and uses an MLModel
and the data files referenced by the DataSource
as information sources.
CreateBatchPrediction
is an asynchronous operation. In response to CreateBatchPrediction
, Amazon Machine Learning (Amazon ML) immediately returns and sets the BatchPrediction
status to PENDING
. After the BatchPrediction
completes, Amazon ML sets the status to COMPLETED
.
You can poll for status updates by using the GetBatchPrediction operation and checking the Status
parameter of the result. After the COMPLETED
status appears, the results are available in the location specified by the OutputUri
parameter.
returns a future to the operation so that it can be executed in parallel to other requests.
|
virtual |
Creates a DataSource
object from an Amazon Relational Database Service (Amazon RDS). A DataSource
references data that can be used to perform CreateMLModel
, CreateEvaluation
, or CreateBatchPrediction
operations.
CreateDataSourceFromRDS
is an asynchronous operation. In response to CreateDataSourceFromRDS
, Amazon Machine Learning (Amazon ML) immediately returns and sets the DataSource
status to PENDING
. After the DataSource
is created and ready for use, Amazon ML sets the Status
parameter to COMPLETED
. DataSource
in the COMPLETED
or PENDING
state can be used only to perform >CreateMLModel
>, CreateEvaluation
, or CreateBatchPrediction
operations.
If Amazon ML cannot accept the input source, it sets the Status
parameter to FAILED
and includes an error message in the Message
attribute of the GetDataSource
operation response.
|
virtual |
Creates a DataSource
object from an Amazon Relational Database Service (Amazon RDS). A DataSource
references data that can be used to perform CreateMLModel
, CreateEvaluation
, or CreateBatchPrediction
operations.
CreateDataSourceFromRDS
is an asynchronous operation. In response to CreateDataSourceFromRDS
, Amazon Machine Learning (Amazon ML) immediately returns and sets the DataSource
status to PENDING
. After the DataSource
is created and ready for use, Amazon ML sets the Status
parameter to COMPLETED
. DataSource
in the COMPLETED
or PENDING
state can be used only to perform >CreateMLModel
>, CreateEvaluation
, or CreateBatchPrediction
operations.
If Amazon ML cannot accept the input source, it sets the Status
parameter to FAILED
and includes an error message in the Message
attribute of the GetDataSource
operation response.
Queues the request into a thread executor and triggers associated callback when operation has finished.
|
virtual |
Creates a DataSource
object from an Amazon Relational Database Service (Amazon RDS). A DataSource
references data that can be used to perform CreateMLModel
, CreateEvaluation
, or CreateBatchPrediction
operations.
CreateDataSourceFromRDS
is an asynchronous operation. In response to CreateDataSourceFromRDS
, Amazon Machine Learning (Amazon ML) immediately returns and sets the DataSource
status to PENDING
. After the DataSource
is created and ready for use, Amazon ML sets the Status
parameter to COMPLETED
. DataSource
in the COMPLETED
or PENDING
state can be used only to perform >CreateMLModel
>, CreateEvaluation
, or CreateBatchPrediction
operations.
If Amazon ML cannot accept the input source, it sets the Status
parameter to FAILED
and includes an error message in the Message
attribute of the GetDataSource
operation response.
returns a future to the operation so that it can be executed in parallel to other requests.
|
virtual |
Creates a DataSource
from a database hosted on an Amazon Redshift cluster. A DataSource
references data that can be used to perform either CreateMLModel
, CreateEvaluation
, or CreateBatchPrediction
operations.
CreateDataSourceFromRedshift
is an asynchronous operation. In response to CreateDataSourceFromRedshift
, Amazon Machine Learning (Amazon ML) immediately returns and sets the DataSource
status to PENDING
. After the DataSource
is created and ready for use, Amazon ML sets the Status
parameter to COMPLETED
. DataSource
in COMPLETED
or PENDING
states can be used to perform only CreateMLModel
, CreateEvaluation
, or CreateBatchPrediction
operations.
If Amazon ML can't accept the input source, it sets the Status
parameter to FAILED
and includes an error message in the Message
attribute of the GetDataSource
operation response.
The observations should be contained in the database hosted on an Amazon Redshift cluster and should be specified by a SelectSqlQuery
query. Amazon ML executes an Unload
command in Amazon Redshift to transfer the result set of the SelectSqlQuery
query to S3StagingLocation
.
After the DataSource
has been created, it's ready for use in evaluations and batch predictions. If you plan to use the DataSource
to train an MLModel
, the DataSource
also requires a recipe. A recipe describes how each input variable will be used in training an MLModel
. Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it be combined with another variable or will it be split apart into word combinations? The recipe provides answers to these questions.
<?oxy_insert_start author="laurama" timestamp="20160406T153842-0700">
You can't change an existing datasource, but you can copy and modify the settings from an existing Amazon Redshift datasource to create a new datasource. To do so, call GetDataSource
for an existing datasource and copy the values to a CreateDataSource
call. Change the settings that you want to change and make sure that all required fields have the appropriate values.
<?oxy_insert_end>
|
virtual |
Creates a DataSource
from a database hosted on an Amazon Redshift cluster. A DataSource
references data that can be used to perform either CreateMLModel
, CreateEvaluation
, or CreateBatchPrediction
operations.
CreateDataSourceFromRedshift
is an asynchronous operation. In response to CreateDataSourceFromRedshift
, Amazon Machine Learning (Amazon ML) immediately returns and sets the DataSource
status to PENDING
. After the DataSource
is created and ready for use, Amazon ML sets the Status
parameter to COMPLETED
. DataSource
in COMPLETED
or PENDING
states can be used to perform only CreateMLModel
, CreateEvaluation
, or CreateBatchPrediction
operations.
If Amazon ML can't accept the input source, it sets the Status
parameter to FAILED
and includes an error message in the Message
attribute of the GetDataSource
operation response.
The observations should be contained in the database hosted on an Amazon Redshift cluster and should be specified by a SelectSqlQuery
query. Amazon ML executes an Unload
command in Amazon Redshift to transfer the result set of the SelectSqlQuery
query to S3StagingLocation
.
After the DataSource
has been created, it's ready for use in evaluations and batch predictions. If you plan to use the DataSource
to train an MLModel
, the DataSource
also requires a recipe. A recipe describes how each input variable will be used in training an MLModel
. Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it be combined with another variable or will it be split apart into word combinations? The recipe provides answers to these questions.
<?oxy_insert_start author="laurama" timestamp="20160406T153842-0700">
You can't change an existing datasource, but you can copy and modify the settings from an existing Amazon Redshift datasource to create a new datasource. To do so, call GetDataSource
for an existing datasource and copy the values to a CreateDataSource
call. Change the settings that you want to change and make sure that all required fields have the appropriate values.
<?oxy_insert_end>
Queues the request into a thread executor and triggers associated callback when operation has finished.
|
virtual |
Creates a DataSource
from a database hosted on an Amazon Redshift cluster. A DataSource
references data that can be used to perform either CreateMLModel
, CreateEvaluation
, or CreateBatchPrediction
operations.
CreateDataSourceFromRedshift
is an asynchronous operation. In response to CreateDataSourceFromRedshift
, Amazon Machine Learning (Amazon ML) immediately returns and sets the DataSource
status to PENDING
. After the DataSource
is created and ready for use, Amazon ML sets the Status
parameter to COMPLETED
. DataSource
in COMPLETED
or PENDING
states can be used to perform only CreateMLModel
, CreateEvaluation
, or CreateBatchPrediction
operations.
If Amazon ML can't accept the input source, it sets the Status
parameter to FAILED
and includes an error message in the Message
attribute of the GetDataSource
operation response.
The observations should be contained in the database hosted on an Amazon Redshift cluster and should be specified by a SelectSqlQuery
query. Amazon ML executes an Unload
command in Amazon Redshift to transfer the result set of the SelectSqlQuery
query to S3StagingLocation
.
After the DataSource
has been created, it's ready for use in evaluations and batch predictions. If you plan to use the DataSource
to train an MLModel
, the DataSource
also requires a recipe. A recipe describes how each input variable will be used in training an MLModel
. Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it be combined with another variable or will it be split apart into word combinations? The recipe provides answers to these questions.
<?oxy_insert_start author="laurama" timestamp="20160406T153842-0700">
You can't change an existing datasource, but you can copy and modify the settings from an existing Amazon Redshift datasource to create a new datasource. To do so, call GetDataSource
for an existing datasource and copy the values to a CreateDataSource
call. Change the settings that you want to change and make sure that all required fields have the appropriate values.
<?oxy_insert_end>
returns a future to the operation so that it can be executed in parallel to other requests.
|
virtual |
Creates a DataSource
object. A DataSource
references data that can be used to perform CreateMLModel
, CreateEvaluation
, or CreateBatchPrediction
operations.
CreateDataSourceFromS3
is an asynchronous operation. In response to CreateDataSourceFromS3
, Amazon Machine Learning (Amazon ML) immediately returns and sets the DataSource
status to PENDING
. After the DataSource
has been created and is ready for use, Amazon ML sets the Status
parameter to COMPLETED
. DataSource
in the COMPLETED
or PENDING
state can be used to perform only CreateMLModel
, CreateEvaluation
or CreateBatchPrediction
operations.
If Amazon ML can't accept the input source, it sets the Status
parameter to FAILED
and includes an error message in the Message
attribute of the GetDataSource
operation response.
The observation data used in a DataSource
should be ready to use; that is, it should have a consistent structure, and missing data values should be kept to a minimum. The observation data must reside in one or more .csv files in an Amazon Simple Storage Service (Amazon S3) location, along with a schema that describes the data items by name and type. The same schema must be used for all of the data files referenced by the DataSource
.
After the DataSource
has been created, it's ready to use in evaluations and batch predictions. If you plan to use the DataSource
to train an MLModel
, the DataSource
also needs a recipe. A recipe describes how each input variable will be used in training an MLModel
. Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it be combined with another variable or will it be split apart into word combinations? The recipe provides answers to these questions.
|
virtual |
Creates a DataSource
object. A DataSource
references data that can be used to perform CreateMLModel
, CreateEvaluation
, or CreateBatchPrediction
operations.
CreateDataSourceFromS3
is an asynchronous operation. In response to CreateDataSourceFromS3
, Amazon Machine Learning (Amazon ML) immediately returns and sets the DataSource
status to PENDING
. After the DataSource
has been created and is ready for use, Amazon ML sets the Status
parameter to COMPLETED
. DataSource
in the COMPLETED
or PENDING
state can be used to perform only CreateMLModel
, CreateEvaluation
or CreateBatchPrediction
operations.
If Amazon ML can't accept the input source, it sets the Status
parameter to FAILED
and includes an error message in the Message
attribute of the GetDataSource
operation response.
The observation data used in a DataSource
should be ready to use; that is, it should have a consistent structure, and missing data values should be kept to a minimum. The observation data must reside in one or more .csv files in an Amazon Simple Storage Service (Amazon S3) location, along with a schema that describes the data items by name and type. The same schema must be used for all of the data files referenced by the DataSource
.
After the DataSource
has been created, it's ready to use in evaluations and batch predictions. If you plan to use the DataSource
to train an MLModel
, the DataSource
also needs a recipe. A recipe describes how each input variable will be used in training an MLModel
. Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it be combined with another variable or will it be split apart into word combinations? The recipe provides answers to these questions.
Queues the request into a thread executor and triggers associated callback when operation has finished.
|
virtual |
Creates a DataSource
object. A DataSource
references data that can be used to perform CreateMLModel
, CreateEvaluation
, or CreateBatchPrediction
operations.
CreateDataSourceFromS3
is an asynchronous operation. In response to CreateDataSourceFromS3
, Amazon Machine Learning (Amazon ML) immediately returns and sets the DataSource
status to PENDING
. After the DataSource
has been created and is ready for use, Amazon ML sets the Status
parameter to COMPLETED
. DataSource
in the COMPLETED
or PENDING
state can be used to perform only CreateMLModel
, CreateEvaluation
or CreateBatchPrediction
operations.
If Amazon ML can't accept the input source, it sets the Status
parameter to FAILED
and includes an error message in the Message
attribute of the GetDataSource
operation response.
The observation data used in a DataSource
should be ready to use; that is, it should have a consistent structure, and missing data values should be kept to a minimum. The observation data must reside in one or more .csv files in an Amazon Simple Storage Service (Amazon S3) location, along with a schema that describes the data items by name and type. The same schema must be used for all of the data files referenced by the DataSource
.
After the DataSource
has been created, it's ready to use in evaluations and batch predictions. If you plan to use the DataSource
to train an MLModel
, the DataSource
also needs a recipe. A recipe describes how each input variable will be used in training an MLModel
. Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it be combined with another variable or will it be split apart into word combinations? The recipe provides answers to these questions.
returns a future to the operation so that it can be executed in parallel to other requests.
|
virtual |
Creates a new Evaluation
of an MLModel
. An MLModel
is evaluated on a set of observations associated to a DataSource
. Like a DataSource
for an MLModel
, the DataSource
for an Evaluation
contains values for the Target Variable
. The Evaluation
compares the predicted result for each observation to the actual outcome and provides a summary so that you know how effective the MLModel
functions on the test data. Evaluation generates a relevant performance metric, such as BinaryAUC, RegressionRMSE or MulticlassAvgFScore based on the corresponding MLModelType
: BINARY
, REGRESSION
or MULTICLASS
.
CreateEvaluation
is an asynchronous operation. In response to CreateEvaluation
, Amazon Machine Learning (Amazon ML) immediately returns and sets the evaluation status to PENDING
. After the Evaluation
is created and ready for use, Amazon ML sets the status to COMPLETED
.
You can use the GetEvaluation
operation to check progress of the evaluation during the creation operation.
|
virtual |
Creates a new Evaluation
of an MLModel
. An MLModel
is evaluated on a set of observations associated to a DataSource
. Like a DataSource
for an MLModel
, the DataSource
for an Evaluation
contains values for the Target Variable
. The Evaluation
compares the predicted result for each observation to the actual outcome and provides a summary so that you know how effective the MLModel
functions on the test data. Evaluation generates a relevant performance metric, such as BinaryAUC, RegressionRMSE or MulticlassAvgFScore based on the corresponding MLModelType
: BINARY
, REGRESSION
or MULTICLASS
.
CreateEvaluation
is an asynchronous operation. In response to CreateEvaluation
, Amazon Machine Learning (Amazon ML) immediately returns and sets the evaluation status to PENDING
. After the Evaluation
is created and ready for use, Amazon ML sets the status to COMPLETED
.
You can use the GetEvaluation
operation to check progress of the evaluation during the creation operation.
Queues the request into a thread executor and triggers associated callback when operation has finished.
|
virtual |
Creates a new Evaluation
of an MLModel
. An MLModel
is evaluated on a set of observations associated to a DataSource
. Like a DataSource
for an MLModel
, the DataSource
for an Evaluation
contains values for the Target Variable
. The Evaluation
compares the predicted result for each observation to the actual outcome and provides a summary so that you know how effective the MLModel
functions on the test data. Evaluation generates a relevant performance metric, such as BinaryAUC, RegressionRMSE or MulticlassAvgFScore based on the corresponding MLModelType
: BINARY
, REGRESSION
or MULTICLASS
.
CreateEvaluation
is an asynchronous operation. In response to CreateEvaluation
, Amazon Machine Learning (Amazon ML) immediately returns and sets the evaluation status to PENDING
. After the Evaluation
is created and ready for use, Amazon ML sets the status to COMPLETED
.
You can use the GetEvaluation
operation to check progress of the evaluation during the creation operation.
returns a future to the operation so that it can be executed in parallel to other requests.
|
virtual |
Creates a new MLModel
using the DataSource
and the recipe as information sources.
An MLModel
is nearly immutable. Users can update only the MLModelName
and the ScoreThreshold
in an MLModel
without creating a new MLModel
.
CreateMLModel
is an asynchronous operation. In response to CreateMLModel
, Amazon Machine Learning (Amazon ML) immediately returns and sets the MLModel
status to PENDING
. After the MLModel
has been created and ready is for use, Amazon ML sets the status to COMPLETED
.
You can use the GetMLModel
operation to check the progress of the MLModel
during the creation operation.
CreateMLModel
requires a DataSource
with computed statistics, which can be created by setting ComputeStatistics
to true
in CreateDataSourceFromRDS
, CreateDataSourceFromS3
, or CreateDataSourceFromRedshift
operations.
|
virtual |
Creates a new MLModel
using the DataSource
and the recipe as information sources.
An MLModel
is nearly immutable. Users can update only the MLModelName
and the ScoreThreshold
in an MLModel
without creating a new MLModel
.
CreateMLModel
is an asynchronous operation. In response to CreateMLModel
, Amazon Machine Learning (Amazon ML) immediately returns and sets the MLModel
status to PENDING
. After the MLModel
has been created and ready is for use, Amazon ML sets the status to COMPLETED
.
You can use the GetMLModel
operation to check the progress of the MLModel
during the creation operation.
CreateMLModel
requires a DataSource
with computed statistics, which can be created by setting ComputeStatistics
to true
in CreateDataSourceFromRDS
, CreateDataSourceFromS3
, or CreateDataSourceFromRedshift
operations.
Queues the request into a thread executor and triggers associated callback when operation has finished.
|
virtual |
Creates a new MLModel
using the DataSource
and the recipe as information sources.
An MLModel
is nearly immutable. Users can update only the MLModelName
and the ScoreThreshold
in an MLModel
without creating a new MLModel
.
CreateMLModel
is an asynchronous operation. In response to CreateMLModel
, Amazon Machine Learning (Amazon ML) immediately returns and sets the MLModel
status to PENDING
. After the MLModel
has been created and ready is for use, Amazon ML sets the status to COMPLETED
.
You can use the GetMLModel
operation to check the progress of the MLModel
during the creation operation.
CreateMLModel
requires a DataSource
with computed statistics, which can be created by setting ComputeStatistics
to true
in CreateDataSourceFromRDS
, CreateDataSourceFromS3
, or CreateDataSourceFromRedshift
operations.
returns a future to the operation so that it can be executed in parallel to other requests.
|
virtual |
Creates a real-time endpoint for the MLModel
. The endpoint contains the URI of the MLModel
; that is, the location to send real-time prediction requests for the specified MLModel
.
|
virtual |
Creates a real-time endpoint for the MLModel
. The endpoint contains the URI of the MLModel
; that is, the location to send real-time prediction requests for the specified MLModel
.
Queues the request into a thread executor and triggers associated callback when operation has finished.
|
virtual |
Creates a real-time endpoint for the MLModel
. The endpoint contains the URI of the MLModel
; that is, the location to send real-time prediction requests for the specified MLModel
.
returns a future to the operation so that it can be executed in parallel to other requests.
|
virtual |
Assigns the DELETED status to a BatchPrediction
, rendering it unusable.
After using the DeleteBatchPrediction
operation, you can use the GetBatchPrediction operation to verify that the status of the BatchPrediction
changed to DELETED.
Caution: The result of the DeleteBatchPrediction
operation is irreversible.
|
virtual |
Assigns the DELETED status to a BatchPrediction
, rendering it unusable.
After using the DeleteBatchPrediction
operation, you can use the GetBatchPrediction operation to verify that the status of the BatchPrediction
changed to DELETED.
Caution: The result of the DeleteBatchPrediction
operation is irreversible.
Queues the request into a thread executor and triggers associated callback when operation has finished.
|
virtual |
Assigns the DELETED status to a BatchPrediction
, rendering it unusable.
After using the DeleteBatchPrediction
operation, you can use the GetBatchPrediction operation to verify that the status of the BatchPrediction
changed to DELETED.
Caution: The result of the DeleteBatchPrediction
operation is irreversible.
returns a future to the operation so that it can be executed in parallel to other requests.
|
virtual |
Assigns the DELETED status to a DataSource
, rendering it unusable.
After using the DeleteDataSource
operation, you can use the GetDataSource operation to verify that the status of the DataSource
changed to DELETED.
Caution: The results of the DeleteDataSource
operation are irreversible.
|
virtual |
Assigns the DELETED status to a DataSource
, rendering it unusable.
After using the DeleteDataSource
operation, you can use the GetDataSource operation to verify that the status of the DataSource
changed to DELETED.
Caution: The results of the DeleteDataSource
operation are irreversible.
Queues the request into a thread executor and triggers associated callback when operation has finished.
|
virtual |
Assigns the DELETED status to a DataSource
, rendering it unusable.
After using the DeleteDataSource
operation, you can use the GetDataSource operation to verify that the status of the DataSource
changed to DELETED.
Caution: The results of the DeleteDataSource
operation are irreversible.
returns a future to the operation so that it can be executed in parallel to other requests.
|
virtual |
Assigns the DELETED
status to an Evaluation
, rendering it unusable.
After invoking the DeleteEvaluation
operation, you can use the GetEvaluation
operation to verify that the status of the Evaluation
changed to DELETED
.
<caution><title>Caution</title>
The results of the DeleteEvaluation
operation are irreversible.
</caution>
|
virtual |
Assigns the DELETED
status to an Evaluation
, rendering it unusable.
After invoking the DeleteEvaluation
operation, you can use the GetEvaluation
operation to verify that the status of the Evaluation
changed to DELETED
.
<caution><title>Caution</title>
The results of the DeleteEvaluation
operation are irreversible.
</caution>
Queues the request into a thread executor and triggers associated callback when operation has finished.
|
virtual |
Assigns the DELETED
status to an Evaluation
, rendering it unusable.
After invoking the DeleteEvaluation
operation, you can use the GetEvaluation
operation to verify that the status of the Evaluation
changed to DELETED
.
<caution><title>Caution</title>
The results of the DeleteEvaluation
operation are irreversible.
</caution>
returns a future to the operation so that it can be executed in parallel to other requests.
|
virtual |
Assigns the DELETED
status to an MLModel
, rendering it unusable.
After using the DeleteMLModel
operation, you can use the GetMLModel
operation to verify that the status of the MLModel
changed to DELETED.
Caution: The result of the DeleteMLModel
operation is irreversible.
|
virtual |
Assigns the DELETED
status to an MLModel
, rendering it unusable.
After using the DeleteMLModel
operation, you can use the GetMLModel
operation to verify that the status of the MLModel
changed to DELETED.
Caution: The result of the DeleteMLModel
operation is irreversible.
Queues the request into a thread executor and triggers associated callback when operation has finished.
|
virtual |
Assigns the DELETED
status to an MLModel
, rendering it unusable.
After using the DeleteMLModel
operation, you can use the GetMLModel
operation to verify that the status of the MLModel
changed to DELETED.
Caution: The result of the DeleteMLModel
operation is irreversible.
returns a future to the operation so that it can be executed in parallel to other requests.
|
virtual |
Deletes a real time endpoint of an MLModel
.
|
virtual |
Deletes a real time endpoint of an MLModel
.
Queues the request into a thread executor and triggers associated callback when operation has finished.
|
virtual |
Deletes a real time endpoint of an MLModel
.
returns a future to the operation so that it can be executed in parallel to other requests.
|
virtual |
Deletes the specified tags associated with an ML object. After this operation is complete, you can't recover deleted tags.
If you specify a tag that doesn't exist, Amazon ML ignores it.
|
virtual |
Deletes the specified tags associated with an ML object. After this operation is complete, you can't recover deleted tags.
If you specify a tag that doesn't exist, Amazon ML ignores it.
Queues the request into a thread executor and triggers associated callback when operation has finished.
|
virtual |
Deletes the specified tags associated with an ML object. After this operation is complete, you can't recover deleted tags.
If you specify a tag that doesn't exist, Amazon ML ignores it.
returns a future to the operation so that it can be executed in parallel to other requests.
|
virtual |
Returns a list of BatchPrediction
operations that match the search criteria in the request.
|
virtual |
Returns a list of BatchPrediction
operations that match the search criteria in the request.
Queues the request into a thread executor and triggers associated callback when operation has finished.
|
virtual |
Returns a list of BatchPrediction
operations that match the search criteria in the request.
returns a future to the operation so that it can be executed in parallel to other requests.
|
virtual |
Returns a list of DataSource
that match the search criteria in the request.
|
virtual |
Returns a list of DataSource
that match the search criteria in the request.
Queues the request into a thread executor and triggers associated callback when operation has finished.
|
virtual |
Returns a list of DataSource
that match the search criteria in the request.
returns a future to the operation so that it can be executed in parallel to other requests.
|
virtual |
Returns a list of DescribeEvaluations
that match the search criteria in the request.
|
virtual |
Returns a list of DescribeEvaluations
that match the search criteria in the request.
Queues the request into a thread executor and triggers associated callback when operation has finished.
|
virtual |
Returns a list of DescribeEvaluations
that match the search criteria in the request.
returns a future to the operation so that it can be executed in parallel to other requests.
|
virtual |
Returns a list of MLModel
that match the search criteria in the request.
|
virtual |
Returns a list of MLModel
that match the search criteria in the request.
Queues the request into a thread executor and triggers associated callback when operation has finished.
|
virtual |
Returns a list of MLModel
that match the search criteria in the request.
returns a future to the operation so that it can be executed in parallel to other requests.
|
virtual |
Describes one or more of the tags for your Amazon ML object.
|
virtual |
Describes one or more of the tags for your Amazon ML object.
Queues the request into a thread executor and triggers associated callback when operation has finished.
|
virtual |
Describes one or more of the tags for your Amazon ML object.
returns a future to the operation so that it can be executed in parallel to other requests.
|
virtual |
Returns a BatchPrediction
that includes detailed metadata, status, and data file information for a Batch Prediction
request.
|
virtual |
Returns a BatchPrediction
that includes detailed metadata, status, and data file information for a Batch Prediction
request.
Queues the request into a thread executor and triggers associated callback when operation has finished.
|
virtual |
Returns a BatchPrediction
that includes detailed metadata, status, and data file information for a Batch Prediction
request.
returns a future to the operation so that it can be executed in parallel to other requests.
|
virtual |
Returns a DataSource
that includes metadata and data file information, as well as the current status of the DataSource
.
GetDataSource
provides results in normal or verbose format. The verbose format adds the schema description and the list of files pointed to by the DataSource to the normal format.
|
virtual |
Returns a DataSource
that includes metadata and data file information, as well as the current status of the DataSource
.
GetDataSource
provides results in normal or verbose format. The verbose format adds the schema description and the list of files pointed to by the DataSource to the normal format.
Queues the request into a thread executor and triggers associated callback when operation has finished.
|
virtual |
Returns a DataSource
that includes metadata and data file information, as well as the current status of the DataSource
.
GetDataSource
provides results in normal or verbose format. The verbose format adds the schema description and the list of files pointed to by the DataSource to the normal format.
returns a future to the operation so that it can be executed in parallel to other requests.
|
virtual |
Returns an Evaluation
that includes metadata as well as the current status of the Evaluation
.
|
virtual |
Returns an Evaluation
that includes metadata as well as the current status of the Evaluation
.
Queues the request into a thread executor and triggers associated callback when operation has finished.
|
virtual |
Returns an Evaluation
that includes metadata as well as the current status of the Evaluation
.
returns a future to the operation so that it can be executed in parallel to other requests.
|
virtual |
Returns an MLModel
that includes detailed metadata, data source information, and the current status of the MLModel
.
GetMLModel
provides results in normal or verbose format.
|
virtual |
Returns an MLModel
that includes detailed metadata, data source information, and the current status of the MLModel
.
GetMLModel
provides results in normal or verbose format.
Queues the request into a thread executor and triggers associated callback when operation has finished.
|
virtual |
Returns an MLModel
that includes detailed metadata, data source information, and the current status of the MLModel
.
GetMLModel
provides results in normal or verbose format.
returns a future to the operation so that it can be executed in parallel to other requests.
|
virtual |
Generates a prediction for the observation using the specified ML Model
.
<note><title>Note</title>
Not all response parameters will be populated. Whether a response parameter is populated depends on the type of model requested.
</note>
|
virtual |
Generates a prediction for the observation using the specified ML Model
.
<note><title>Note</title>
Not all response parameters will be populated. Whether a response parameter is populated depends on the type of model requested.
</note>
Queues the request into a thread executor and triggers associated callback when operation has finished.
|
virtual |
Generates a prediction for the observation using the specified ML Model
.
<note><title>Note</title>
Not all response parameters will be populated. Whether a response parameter is populated depends on the type of model requested.
</note>
returns a future to the operation so that it can be executed in parallel to other requests.
|
virtual |
Updates the BatchPredictionName
of a BatchPrediction
.
You can use the GetBatchPrediction
operation to view the contents of the updated data element.
|
virtual |
Updates the BatchPredictionName
of a BatchPrediction
.
You can use the GetBatchPrediction
operation to view the contents of the updated data element.
Queues the request into a thread executor and triggers associated callback when operation has finished.
|
virtual |
Updates the BatchPredictionName
of a BatchPrediction
.
You can use the GetBatchPrediction
operation to view the contents of the updated data element.
returns a future to the operation so that it can be executed in parallel to other requests.
|
virtual |
Updates the DataSourceName
of a DataSource
.
You can use the GetDataSource
operation to view the contents of the updated data element.
|
virtual |
Updates the DataSourceName
of a DataSource
.
You can use the GetDataSource
operation to view the contents of the updated data element.
Queues the request into a thread executor and triggers associated callback when operation has finished.
|
virtual |
Updates the DataSourceName
of a DataSource
.
You can use the GetDataSource
operation to view the contents of the updated data element.
returns a future to the operation so that it can be executed in parallel to other requests.
|
virtual |
Updates the EvaluationName
of an Evaluation
.
You can use the GetEvaluation
operation to view the contents of the updated data element.
|
virtual |
Updates the EvaluationName
of an Evaluation
.
You can use the GetEvaluation
operation to view the contents of the updated data element.
Queues the request into a thread executor and triggers associated callback when operation has finished.
|
virtual |
Updates the EvaluationName
of an Evaluation
.
You can use the GetEvaluation
operation to view the contents of the updated data element.
returns a future to the operation so that it can be executed in parallel to other requests.
|
virtual |
Updates the MLModelName
and the ScoreThreshold
of an MLModel
.
You can use the GetMLModel
operation to view the contents of the updated data element.
|
virtual |
Updates the MLModelName
and the ScoreThreshold
of an MLModel
.
You can use the GetMLModel
operation to view the contents of the updated data element.
Queues the request into a thread executor and triggers associated callback when operation has finished.
|
virtual |
Updates the MLModelName
and the ScoreThreshold
of an MLModel
.
You can use the GetMLModel
operation to view the contents of the updated data element.
returns a future to the operation so that it can be executed in parallel to other requests.