AWS SDK for C++  1.8.100
AWS SDK for C++
Public Member Functions | List of all members
Aws::SageMaker::Model::HyperParameterTuningJobConfig Class Reference

#include <HyperParameterTuningJobConfig.h>

Public Member Functions

 HyperParameterTuningJobConfig ()
 
 HyperParameterTuningJobConfig (Aws::Utils::Json::JsonView jsonValue)
 
HyperParameterTuningJobConfigoperator= (Aws::Utils::Json::JsonView jsonValue)
 
Aws::Utils::Json::JsonValue Jsonize () const
 
const HyperParameterTuningJobStrategyTypeGetStrategy () const
 
bool StrategyHasBeenSet () const
 
void SetStrategy (const HyperParameterTuningJobStrategyType &value)
 
void SetStrategy (HyperParameterTuningJobStrategyType &&value)
 
HyperParameterTuningJobConfigWithStrategy (const HyperParameterTuningJobStrategyType &value)
 
HyperParameterTuningJobConfigWithStrategy (HyperParameterTuningJobStrategyType &&value)
 
const HyperParameterTuningJobObjectiveGetHyperParameterTuningJobObjective () const
 
bool HyperParameterTuningJobObjectiveHasBeenSet () const
 
void SetHyperParameterTuningJobObjective (const HyperParameterTuningJobObjective &value)
 
void SetHyperParameterTuningJobObjective (HyperParameterTuningJobObjective &&value)
 
HyperParameterTuningJobConfigWithHyperParameterTuningJobObjective (const HyperParameterTuningJobObjective &value)
 
HyperParameterTuningJobConfigWithHyperParameterTuningJobObjective (HyperParameterTuningJobObjective &&value)
 
const ResourceLimitsGetResourceLimits () const
 
bool ResourceLimitsHasBeenSet () const
 
void SetResourceLimits (const ResourceLimits &value)
 
void SetResourceLimits (ResourceLimits &&value)
 
HyperParameterTuningJobConfigWithResourceLimits (const ResourceLimits &value)
 
HyperParameterTuningJobConfigWithResourceLimits (ResourceLimits &&value)
 
const ParameterRangesGetParameterRanges () const
 
bool ParameterRangesHasBeenSet () const
 
void SetParameterRanges (const ParameterRanges &value)
 
void SetParameterRanges (ParameterRanges &&value)
 
HyperParameterTuningJobConfigWithParameterRanges (const ParameterRanges &value)
 
HyperParameterTuningJobConfigWithParameterRanges (ParameterRanges &&value)
 
const TrainingJobEarlyStoppingTypeGetTrainingJobEarlyStoppingType () const
 
bool TrainingJobEarlyStoppingTypeHasBeenSet () const
 
void SetTrainingJobEarlyStoppingType (const TrainingJobEarlyStoppingType &value)
 
void SetTrainingJobEarlyStoppingType (TrainingJobEarlyStoppingType &&value)
 
HyperParameterTuningJobConfigWithTrainingJobEarlyStoppingType (const TrainingJobEarlyStoppingType &value)
 
HyperParameterTuningJobConfigWithTrainingJobEarlyStoppingType (TrainingJobEarlyStoppingType &&value)
 
const TuningJobCompletionCriteriaGetTuningJobCompletionCriteria () const
 
bool TuningJobCompletionCriteriaHasBeenSet () const
 
void SetTuningJobCompletionCriteria (const TuningJobCompletionCriteria &value)
 
void SetTuningJobCompletionCriteria (TuningJobCompletionCriteria &&value)
 
HyperParameterTuningJobConfigWithTuningJobCompletionCriteria (const TuningJobCompletionCriteria &value)
 
HyperParameterTuningJobConfigWithTuningJobCompletionCriteria (TuningJobCompletionCriteria &&value)
 

Detailed Description

Configures a hyperparameter tuning job.

See Also:

AWS API Reference

Definition at line 36 of file HyperParameterTuningJobConfig.h.

Constructor & Destructor Documentation

◆ HyperParameterTuningJobConfig() [1/2]

Aws::SageMaker::Model::HyperParameterTuningJobConfig::HyperParameterTuningJobConfig ( )

◆ HyperParameterTuningJobConfig() [2/2]

Aws::SageMaker::Model::HyperParameterTuningJobConfig::HyperParameterTuningJobConfig ( Aws::Utils::Json::JsonView  jsonValue)

Member Function Documentation

◆ GetHyperParameterTuningJobObjective()

const HyperParameterTuningJobObjective& Aws::SageMaker::Model::HyperParameterTuningJobConfig::GetHyperParameterTuningJobObjective ( ) const
inline

The HyperParameterTuningJobObjective object that specifies the objective metric for this tuning job.

Definition at line 110 of file HyperParameterTuningJobConfig.h.

◆ GetParameterRanges()

const ParameterRanges& Aws::SageMaker::Model::HyperParameterTuningJobConfig::GetParameterRanges ( ) const
inline

The ParameterRanges object that specifies the ranges of hyperparameters that this tuning job searches.

Definition at line 184 of file HyperParameterTuningJobConfig.h.

◆ GetResourceLimits()

const ResourceLimits& Aws::SageMaker::Model::HyperParameterTuningJobConfig::GetResourceLimits ( ) const
inline

The ResourceLimits object that specifies the maximum number of training jobs and parallel training jobs for this tuning job.

Definition at line 147 of file HyperParameterTuningJobConfig.h.

◆ GetStrategy()

const HyperParameterTuningJobStrategyType& Aws::SageMaker::Model::HyperParameterTuningJobConfig::GetStrategy ( ) const
inline

Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. To use the Bayesian search strategy, set this to Bayesian. To randomly search, set it to Random. For information about search strategies, see How Hyperparameter Tuning Works.

Definition at line 53 of file HyperParameterTuningJobConfig.h.

◆ GetTrainingJobEarlyStoppingType()

const TrainingJobEarlyStoppingType& Aws::SageMaker::Model::HyperParameterTuningJobConfig::GetTrainingJobEarlyStoppingType ( ) const
inline

Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. This can be one of the following values (the default value is OFF):

OFF

Training jobs launched by the hyperparameter tuning job do not use early stopping.

AUTO

Amazon SageMaker stops training jobs launched by the hyperparameter tuning job when they are unlikely to perform better than previously completed training jobs. For more information, see Stop Training Jobs Early.

Definition at line 228 of file HyperParameterTuningJobConfig.h.

◆ GetTuningJobCompletionCriteria()

const TuningJobCompletionCriteria& Aws::SageMaker::Model::HyperParameterTuningJobConfig::GetTuningJobCompletionCriteria ( ) const
inline

The tuning job's completion criteria.

Definition at line 299 of file HyperParameterTuningJobConfig.h.

◆ HyperParameterTuningJobObjectiveHasBeenSet()

bool Aws::SageMaker::Model::HyperParameterTuningJobConfig::HyperParameterTuningJobObjectiveHasBeenSet ( ) const
inline

The HyperParameterTuningJobObjective object that specifies the objective metric for this tuning job.

Definition at line 116 of file HyperParameterTuningJobConfig.h.

◆ Jsonize()

Aws::Utils::Json::JsonValue Aws::SageMaker::Model::HyperParameterTuningJobConfig::Jsonize ( ) const

◆ operator=()

HyperParameterTuningJobConfig& Aws::SageMaker::Model::HyperParameterTuningJobConfig::operator= ( Aws::Utils::Json::JsonView  jsonValue)

◆ ParameterRangesHasBeenSet()

bool Aws::SageMaker::Model::HyperParameterTuningJobConfig::ParameterRangesHasBeenSet ( ) const
inline

The ParameterRanges object that specifies the ranges of hyperparameters that this tuning job searches.

Definition at line 190 of file HyperParameterTuningJobConfig.h.

◆ ResourceLimitsHasBeenSet()

bool Aws::SageMaker::Model::HyperParameterTuningJobConfig::ResourceLimitsHasBeenSet ( ) const
inline

The ResourceLimits object that specifies the maximum number of training jobs and parallel training jobs for this tuning job.

Definition at line 153 of file HyperParameterTuningJobConfig.h.

◆ SetHyperParameterTuningJobObjective() [1/2]

void Aws::SageMaker::Model::HyperParameterTuningJobConfig::SetHyperParameterTuningJobObjective ( const HyperParameterTuningJobObjective value)
inline

The HyperParameterTuningJobObjective object that specifies the objective metric for this tuning job.

Definition at line 122 of file HyperParameterTuningJobConfig.h.

◆ SetHyperParameterTuningJobObjective() [2/2]

void Aws::SageMaker::Model::HyperParameterTuningJobConfig::SetHyperParameterTuningJobObjective ( HyperParameterTuningJobObjective &&  value)
inline

The HyperParameterTuningJobObjective object that specifies the objective metric for this tuning job.

Definition at line 128 of file HyperParameterTuningJobConfig.h.

◆ SetParameterRanges() [1/2]

void Aws::SageMaker::Model::HyperParameterTuningJobConfig::SetParameterRanges ( const ParameterRanges value)
inline

The ParameterRanges object that specifies the ranges of hyperparameters that this tuning job searches.

Definition at line 196 of file HyperParameterTuningJobConfig.h.

◆ SetParameterRanges() [2/2]

void Aws::SageMaker::Model::HyperParameterTuningJobConfig::SetParameterRanges ( ParameterRanges &&  value)
inline

The ParameterRanges object that specifies the ranges of hyperparameters that this tuning job searches.

Definition at line 202 of file HyperParameterTuningJobConfig.h.

◆ SetResourceLimits() [1/2]

void Aws::SageMaker::Model::HyperParameterTuningJobConfig::SetResourceLimits ( const ResourceLimits value)
inline

The ResourceLimits object that specifies the maximum number of training jobs and parallel training jobs for this tuning job.

Definition at line 159 of file HyperParameterTuningJobConfig.h.

◆ SetResourceLimits() [2/2]

void Aws::SageMaker::Model::HyperParameterTuningJobConfig::SetResourceLimits ( ResourceLimits &&  value)
inline

The ResourceLimits object that specifies the maximum number of training jobs and parallel training jobs for this tuning job.

Definition at line 165 of file HyperParameterTuningJobConfig.h.

◆ SetStrategy() [1/2]

void Aws::SageMaker::Model::HyperParameterTuningJobConfig::SetStrategy ( const HyperParameterTuningJobStrategyType value)
inline

Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. To use the Bayesian search strategy, set this to Bayesian. To randomly search, set it to Random. For information about search strategies, see How Hyperparameter Tuning Works.

Definition at line 73 of file HyperParameterTuningJobConfig.h.

◆ SetStrategy() [2/2]

void Aws::SageMaker::Model::HyperParameterTuningJobConfig::SetStrategy ( HyperParameterTuningJobStrategyType &&  value)
inline

Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. To use the Bayesian search strategy, set this to Bayesian. To randomly search, set it to Random. For information about search strategies, see How Hyperparameter Tuning Works.

Definition at line 83 of file HyperParameterTuningJobConfig.h.

◆ SetTrainingJobEarlyStoppingType() [1/2]

void Aws::SageMaker::Model::HyperParameterTuningJobConfig::SetTrainingJobEarlyStoppingType ( const TrainingJobEarlyStoppingType value)
inline

Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. This can be one of the following values (the default value is OFF):

OFF

Training jobs launched by the hyperparameter tuning job do not use early stopping.

AUTO

Amazon SageMaker stops training jobs launched by the hyperparameter tuning job when they are unlikely to perform better than previously completed training jobs. For more information, see Stop Training Jobs Early.

Definition at line 254 of file HyperParameterTuningJobConfig.h.

◆ SetTrainingJobEarlyStoppingType() [2/2]

void Aws::SageMaker::Model::HyperParameterTuningJobConfig::SetTrainingJobEarlyStoppingType ( TrainingJobEarlyStoppingType &&  value)
inline

Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. This can be one of the following values (the default value is OFF):

OFF

Training jobs launched by the hyperparameter tuning job do not use early stopping.

AUTO

Amazon SageMaker stops training jobs launched by the hyperparameter tuning job when they are unlikely to perform better than previously completed training jobs. For more information, see Stop Training Jobs Early.

Definition at line 267 of file HyperParameterTuningJobConfig.h.

◆ SetTuningJobCompletionCriteria() [1/2]

void Aws::SageMaker::Model::HyperParameterTuningJobConfig::SetTuningJobCompletionCriteria ( const TuningJobCompletionCriteria value)
inline

The tuning job's completion criteria.

Definition at line 309 of file HyperParameterTuningJobConfig.h.

◆ SetTuningJobCompletionCriteria() [2/2]

void Aws::SageMaker::Model::HyperParameterTuningJobConfig::SetTuningJobCompletionCriteria ( TuningJobCompletionCriteria &&  value)
inline

The tuning job's completion criteria.

Definition at line 314 of file HyperParameterTuningJobConfig.h.

◆ StrategyHasBeenSet()

bool Aws::SageMaker::Model::HyperParameterTuningJobConfig::StrategyHasBeenSet ( ) const
inline

Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. To use the Bayesian search strategy, set this to Bayesian. To randomly search, set it to Random. For information about search strategies, see How Hyperparameter Tuning Works.

Definition at line 63 of file HyperParameterTuningJobConfig.h.

◆ TrainingJobEarlyStoppingTypeHasBeenSet()

bool Aws::SageMaker::Model::HyperParameterTuningJobConfig::TrainingJobEarlyStoppingTypeHasBeenSet ( ) const
inline

Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. This can be one of the following values (the default value is OFF):

OFF

Training jobs launched by the hyperparameter tuning job do not use early stopping.

AUTO

Amazon SageMaker stops training jobs launched by the hyperparameter tuning job when they are unlikely to perform better than previously completed training jobs. For more information, see Stop Training Jobs Early.

Definition at line 241 of file HyperParameterTuningJobConfig.h.

◆ TuningJobCompletionCriteriaHasBeenSet()

bool Aws::SageMaker::Model::HyperParameterTuningJobConfig::TuningJobCompletionCriteriaHasBeenSet ( ) const
inline

The tuning job's completion criteria.

Definition at line 304 of file HyperParameterTuningJobConfig.h.

◆ WithHyperParameterTuningJobObjective() [1/2]

HyperParameterTuningJobConfig& Aws::SageMaker::Model::HyperParameterTuningJobConfig::WithHyperParameterTuningJobObjective ( const HyperParameterTuningJobObjective value)
inline

The HyperParameterTuningJobObjective object that specifies the objective metric for this tuning job.

Definition at line 134 of file HyperParameterTuningJobConfig.h.

◆ WithHyperParameterTuningJobObjective() [2/2]

HyperParameterTuningJobConfig& Aws::SageMaker::Model::HyperParameterTuningJobConfig::WithHyperParameterTuningJobObjective ( HyperParameterTuningJobObjective &&  value)
inline

The HyperParameterTuningJobObjective object that specifies the objective metric for this tuning job.

Definition at line 140 of file HyperParameterTuningJobConfig.h.

◆ WithParameterRanges() [1/2]

HyperParameterTuningJobConfig& Aws::SageMaker::Model::HyperParameterTuningJobConfig::WithParameterRanges ( const ParameterRanges value)
inline

The ParameterRanges object that specifies the ranges of hyperparameters that this tuning job searches.

Definition at line 208 of file HyperParameterTuningJobConfig.h.

◆ WithParameterRanges() [2/2]

HyperParameterTuningJobConfig& Aws::SageMaker::Model::HyperParameterTuningJobConfig::WithParameterRanges ( ParameterRanges &&  value)
inline

The ParameterRanges object that specifies the ranges of hyperparameters that this tuning job searches.

Definition at line 214 of file HyperParameterTuningJobConfig.h.

◆ WithResourceLimits() [1/2]

HyperParameterTuningJobConfig& Aws::SageMaker::Model::HyperParameterTuningJobConfig::WithResourceLimits ( const ResourceLimits value)
inline

The ResourceLimits object that specifies the maximum number of training jobs and parallel training jobs for this tuning job.

Definition at line 171 of file HyperParameterTuningJobConfig.h.

◆ WithResourceLimits() [2/2]

HyperParameterTuningJobConfig& Aws::SageMaker::Model::HyperParameterTuningJobConfig::WithResourceLimits ( ResourceLimits &&  value)
inline

The ResourceLimits object that specifies the maximum number of training jobs and parallel training jobs for this tuning job.

Definition at line 177 of file HyperParameterTuningJobConfig.h.

◆ WithStrategy() [1/2]

HyperParameterTuningJobConfig& Aws::SageMaker::Model::HyperParameterTuningJobConfig::WithStrategy ( const HyperParameterTuningJobStrategyType value)
inline

Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. To use the Bayesian search strategy, set this to Bayesian. To randomly search, set it to Random. For information about search strategies, see How Hyperparameter Tuning Works.

Definition at line 93 of file HyperParameterTuningJobConfig.h.

◆ WithStrategy() [2/2]

HyperParameterTuningJobConfig& Aws::SageMaker::Model::HyperParameterTuningJobConfig::WithStrategy ( HyperParameterTuningJobStrategyType &&  value)
inline

Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. To use the Bayesian search strategy, set this to Bayesian. To randomly search, set it to Random. For information about search strategies, see How Hyperparameter Tuning Works.

Definition at line 103 of file HyperParameterTuningJobConfig.h.

◆ WithTrainingJobEarlyStoppingType() [1/2]

HyperParameterTuningJobConfig& Aws::SageMaker::Model::HyperParameterTuningJobConfig::WithTrainingJobEarlyStoppingType ( const TrainingJobEarlyStoppingType value)
inline

Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. This can be one of the following values (the default value is OFF):

OFF

Training jobs launched by the hyperparameter tuning job do not use early stopping.

AUTO

Amazon SageMaker stops training jobs launched by the hyperparameter tuning job when they are unlikely to perform better than previously completed training jobs. For more information, see Stop Training Jobs Early.

Definition at line 280 of file HyperParameterTuningJobConfig.h.

◆ WithTrainingJobEarlyStoppingType() [2/2]

HyperParameterTuningJobConfig& Aws::SageMaker::Model::HyperParameterTuningJobConfig::WithTrainingJobEarlyStoppingType ( TrainingJobEarlyStoppingType &&  value)
inline

Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. This can be one of the following values (the default value is OFF):

OFF

Training jobs launched by the hyperparameter tuning job do not use early stopping.

AUTO

Amazon SageMaker stops training jobs launched by the hyperparameter tuning job when they are unlikely to perform better than previously completed training jobs. For more information, see Stop Training Jobs Early.

Definition at line 293 of file HyperParameterTuningJobConfig.h.

◆ WithTuningJobCompletionCriteria() [1/2]

HyperParameterTuningJobConfig& Aws::SageMaker::Model::HyperParameterTuningJobConfig::WithTuningJobCompletionCriteria ( const TuningJobCompletionCriteria value)
inline

The tuning job's completion criteria.

Definition at line 319 of file HyperParameterTuningJobConfig.h.

◆ WithTuningJobCompletionCriteria() [2/2]

HyperParameterTuningJobConfig& Aws::SageMaker::Model::HyperParameterTuningJobConfig::WithTuningJobCompletionCriteria ( TuningJobCompletionCriteria &&  value)
inline

The tuning job's completion criteria.

Definition at line 324 of file HyperParameterTuningJobConfig.h.


The documentation for this class was generated from the following file: