AWS SDK for C++  1.9.124
AWS SDK for C++
Public Member Functions | List of all members
Aws::MachineLearning::Model::S3DataSpec Class Reference

#include <S3DataSpec.h>

Public Member Functions

 S3DataSpec ()
 
 S3DataSpec (Aws::Utils::Json::JsonView jsonValue)
 
S3DataSpecoperator= (Aws::Utils::Json::JsonView jsonValue)
 
Aws::Utils::Json::JsonValue Jsonize () const
 
const Aws::StringGetDataLocationS3 () const
 
bool DataLocationS3HasBeenSet () const
 
void SetDataLocationS3 (const Aws::String &value)
 
void SetDataLocationS3 (Aws::String &&value)
 
void SetDataLocationS3 (const char *value)
 
S3DataSpecWithDataLocationS3 (const Aws::String &value)
 
S3DataSpecWithDataLocationS3 (Aws::String &&value)
 
S3DataSpecWithDataLocationS3 (const char *value)
 
const Aws::StringGetDataRearrangement () const
 
bool DataRearrangementHasBeenSet () const
 
void SetDataRearrangement (const Aws::String &value)
 
void SetDataRearrangement (Aws::String &&value)
 
void SetDataRearrangement (const char *value)
 
S3DataSpecWithDataRearrangement (const Aws::String &value)
 
S3DataSpecWithDataRearrangement (Aws::String &&value)
 
S3DataSpecWithDataRearrangement (const char *value)
 
const Aws::StringGetDataSchema () const
 
bool DataSchemaHasBeenSet () const
 
void SetDataSchema (const Aws::String &value)
 
void SetDataSchema (Aws::String &&value)
 
void SetDataSchema (const char *value)
 
S3DataSpecWithDataSchema (const Aws::String &value)
 
S3DataSpecWithDataSchema (Aws::String &&value)
 
S3DataSpecWithDataSchema (const char *value)
 
const Aws::StringGetDataSchemaLocationS3 () const
 
bool DataSchemaLocationS3HasBeenSet () const
 
void SetDataSchemaLocationS3 (const Aws::String &value)
 
void SetDataSchemaLocationS3 (Aws::String &&value)
 
void SetDataSchemaLocationS3 (const char *value)
 
S3DataSpecWithDataSchemaLocationS3 (const Aws::String &value)
 
S3DataSpecWithDataSchemaLocationS3 (Aws::String &&value)
 
S3DataSpecWithDataSchemaLocationS3 (const char *value)
 

Detailed Description

Describes the data specification of a DataSource.

See Also:

AWS API Reference

Definition at line 32 of file S3DataSpec.h.

Constructor & Destructor Documentation

◆ S3DataSpec() [1/2]

Aws::MachineLearning::Model::S3DataSpec::S3DataSpec ( )

◆ S3DataSpec() [2/2]

Aws::MachineLearning::Model::S3DataSpec::S3DataSpec ( Aws::Utils::Json::JsonView  jsonValue)

Member Function Documentation

◆ DataLocationS3HasBeenSet()

bool Aws::MachineLearning::Model::S3DataSpec::DataLocationS3HasBeenSet ( ) const
inline

The location of the data file(s) used by a DataSource. The URI specifies a data file or an Amazon Simple Storage Service (Amazon S3) directory or bucket containing data files.

Definition at line 53 of file S3DataSpec.h.

◆ DataRearrangementHasBeenSet()

bool Aws::MachineLearning::Model::S3DataSpec::DataRearrangementHasBeenSet ( ) const
inline

A JSON string that represents the splitting and rearrangement processing to be applied to a DataSource. If the DataRearrangement parameter is not provided, all of the input data is used to create the Datasource.

There are multiple parameters that control what data is used to create a datasource:

  • percentBegin

    Use percentBegin to indicate the beginning of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource.

  • percentEnd

    Use percentEnd to indicate the end of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource.

  • complement

    The complement parameter instructs Amazon ML to use the data that is not included in the range of percentBegin to percentEnd to create a datasource. The complement parameter is useful if you need to create complementary datasources for training and evaluation. To create a complementary datasource, use the same values for percentBegin and percentEnd, along with the complement parameter.

    For example, the following two datasources do not share any data, and can be used to train and evaluate a model. The first datasource has 25 percent of the data, and the second one has 75 percent of the data.

    Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}}

    Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25, "complement":"true"}}

  • strategy

    To change how Amazon ML splits the data for a datasource, use the strategy parameter.

    The default value for the strategy parameter is sequential, meaning that Amazon ML takes all of the data records between the percentBegin and percentEnd parameters for the datasource, in the order that the records appear in the input data.

    The following two DataRearrangement lines are examples of sequentially ordered training and evaluation datasources:

    Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential"}}

    Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential", "complement":"true"}}

    To randomly split the input data into the proportions indicated by the percentBegin and percentEnd parameters, set the strategy parameter to random and provide a string that is used as the seed value for the random data splitting (for example, you can use the S3 path to your data as the random seed string). If you choose the random split strategy, Amazon ML assigns each row of data a pseudo-random number between 0 and 100, and then selects the rows that have an assigned number between percentBegin and percentEnd. Pseudo-random numbers are assigned using both the input seed string value and the byte offset as a seed, so changing the data results in a different split. Any existing ordering is preserved. The random splitting strategy ensures that variables in the training and evaluation data are distributed similarly. It is useful in the cases where the input data may have an implicit sort order, which would otherwise result in training and evaluation datasources containing non-similar data records.

    The following two DataRearrangement lines are examples of non-sequentially ordered training and evaluation datasources:

    Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}}

    Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}

Definition at line 222 of file S3DataSpec.h.

◆ DataSchemaHasBeenSet()

bool Aws::MachineLearning::Model::S3DataSpec::DataSchemaHasBeenSet ( ) const
inline

A JSON string that represents the schema for an Amazon S3 DataSource. The DataSchema defines the structure of the observation data in the data file(s) referenced in the DataSource.

You must provide either the DataSchema or the DataSchemaLocationS3.

Define your DataSchema as a series of key-value pairs. attributes and excludedVariableNames have an array of key-value pairs for their value. Use the following format to define your DataSchema.

{ "version": "1.0",

"recordAnnotationFieldName": "F1",

"recordWeightFieldName": "F2",

"targetFieldName": "F3",

"dataFormat": "CSV",

"dataFileContainsHeader": true,

"attributes": [

{ "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType": "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" } ],

"excludedVariableNames": [ "F6" ] }

Definition at line 645 of file S3DataSpec.h.

◆ DataSchemaLocationS3HasBeenSet()

bool Aws::MachineLearning::Model::S3DataSpec::DataSchemaLocationS3HasBeenSet ( ) const
inline

Describes the schema location in Amazon S3. You must provide either the DataSchema or the DataSchemaLocationS3.

Definition at line 790 of file S3DataSpec.h.

◆ GetDataLocationS3()

const Aws::String& Aws::MachineLearning::Model::S3DataSpec::GetDataLocationS3 ( ) const
inline

The location of the data file(s) used by a DataSource. The URI specifies a data file or an Amazon Simple Storage Service (Amazon S3) directory or bucket containing data files.

Definition at line 46 of file S3DataSpec.h.

◆ GetDataRearrangement()

const Aws::String& Aws::MachineLearning::Model::S3DataSpec::GetDataRearrangement ( ) const
inline

A JSON string that represents the splitting and rearrangement processing to be applied to a DataSource. If the DataRearrangement parameter is not provided, all of the input data is used to create the Datasource.

There are multiple parameters that control what data is used to create a datasource:

  • percentBegin

    Use percentBegin to indicate the beginning of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource.

  • percentEnd

    Use percentEnd to indicate the end of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource.

  • complement

    The complement parameter instructs Amazon ML to use the data that is not included in the range of percentBegin to percentEnd to create a datasource. The complement parameter is useful if you need to create complementary datasources for training and evaluation. To create a complementary datasource, use the same values for percentBegin and percentEnd, along with the complement parameter.

    For example, the following two datasources do not share any data, and can be used to train and evaluate a model. The first datasource has 25 percent of the data, and the second one has 75 percent of the data.

    Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}}

    Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25, "complement":"true"}}

  • strategy

    To change how Amazon ML splits the data for a datasource, use the strategy parameter.

    The default value for the strategy parameter is sequential, meaning that Amazon ML takes all of the data records between the percentBegin and percentEnd parameters for the datasource, in the order that the records appear in the input data.

    The following two DataRearrangement lines are examples of sequentially ordered training and evaluation datasources:

    Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential"}}

    Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential", "complement":"true"}}

    To randomly split the input data into the proportions indicated by the percentBegin and percentEnd parameters, set the strategy parameter to random and provide a string that is used as the seed value for the random data splitting (for example, you can use the S3 path to your data as the random seed string). If you choose the random split strategy, Amazon ML assigns each row of data a pseudo-random number between 0 and 100, and then selects the rows that have an assigned number between percentBegin and percentEnd. Pseudo-random numbers are assigned using both the input seed string value and the byte offset as a seed, so changing the data results in a different split. Any existing ordering is preserved. The random splitting strategy ensures that variables in the training and evaluation data are distributed similarly. It is useful in the cases where the input data may have an implicit sort order, which would otherwise result in training and evaluation datasources containing non-similar data records.

    The following two DataRearrangement lines are examples of non-sequentially ordered training and evaluation datasources:

    Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}}

    Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}

Definition at line 159 of file S3DataSpec.h.

◆ GetDataSchema()

const Aws::String& Aws::MachineLearning::Model::S3DataSpec::GetDataSchema ( ) const
inline

A JSON string that represents the schema for an Amazon S3 DataSource. The DataSchema defines the structure of the observation data in the data file(s) referenced in the DataSource.

You must provide either the DataSchema or the DataSchemaLocationS3.

Define your DataSchema as a series of key-value pairs. attributes and excludedVariableNames have an array of key-value pairs for their value. Use the following format to define your DataSchema.

{ "version": "1.0",

"recordAnnotationFieldName": "F1",

"recordWeightFieldName": "F2",

"targetFieldName": "F3",

"dataFormat": "CSV",

"dataFileContainsHeader": true,

"attributes": [

{ "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType": "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" } ],

"excludedVariableNames": [ "F6" ] }

Definition at line 623 of file S3DataSpec.h.

◆ GetDataSchemaLocationS3()

const Aws::String& Aws::MachineLearning::Model::S3DataSpec::GetDataSchemaLocationS3 ( ) const
inline

Describes the schema location in Amazon S3. You must provide either the DataSchema or the DataSchemaLocationS3.

Definition at line 784 of file S3DataSpec.h.

◆ Jsonize()

Aws::Utils::Json::JsonValue Aws::MachineLearning::Model::S3DataSpec::Jsonize ( ) const

◆ operator=()

S3DataSpec& Aws::MachineLearning::Model::S3DataSpec::operator= ( Aws::Utils::Json::JsonView  jsonValue)

◆ SetDataLocationS3() [1/3]

void Aws::MachineLearning::Model::S3DataSpec::SetDataLocationS3 ( Aws::String &&  value)
inline

The location of the data file(s) used by a DataSource. The URI specifies a data file or an Amazon Simple Storage Service (Amazon S3) directory or bucket containing data files.

Definition at line 67 of file S3DataSpec.h.

◆ SetDataLocationS3() [2/3]

void Aws::MachineLearning::Model::S3DataSpec::SetDataLocationS3 ( const Aws::String value)
inline

The location of the data file(s) used by a DataSource. The URI specifies a data file or an Amazon Simple Storage Service (Amazon S3) directory or bucket containing data files.

Definition at line 60 of file S3DataSpec.h.

◆ SetDataLocationS3() [3/3]

void Aws::MachineLearning::Model::S3DataSpec::SetDataLocationS3 ( const char *  value)
inline

The location of the data file(s) used by a DataSource. The URI specifies a data file or an Amazon Simple Storage Service (Amazon S3) directory or bucket containing data files.

Definition at line 74 of file S3DataSpec.h.

◆ SetDataRearrangement() [1/3]

void Aws::MachineLearning::Model::S3DataSpec::SetDataRearrangement ( Aws::String &&  value)
inline

A JSON string that represents the splitting and rearrangement processing to be applied to a DataSource. If the DataRearrangement parameter is not provided, all of the input data is used to create the Datasource.

There are multiple parameters that control what data is used to create a datasource:

  • percentBegin

    Use percentBegin to indicate the beginning of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource.

  • percentEnd

    Use percentEnd to indicate the end of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource.

  • complement

    The complement parameter instructs Amazon ML to use the data that is not included in the range of percentBegin to percentEnd to create a datasource. The complement parameter is useful if you need to create complementary datasources for training and evaluation. To create a complementary datasource, use the same values for percentBegin and percentEnd, along with the complement parameter.

    For example, the following two datasources do not share any data, and can be used to train and evaluate a model. The first datasource has 25 percent of the data, and the second one has 75 percent of the data.

    Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}}

    Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25, "complement":"true"}}

  • strategy

    To change how Amazon ML splits the data for a datasource, use the strategy parameter.

    The default value for the strategy parameter is sequential, meaning that Amazon ML takes all of the data records between the percentBegin and percentEnd parameters for the datasource, in the order that the records appear in the input data.

    The following two DataRearrangement lines are examples of sequentially ordered training and evaluation datasources:

    Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential"}}

    Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential", "complement":"true"}}

    To randomly split the input data into the proportions indicated by the percentBegin and percentEnd parameters, set the strategy parameter to random and provide a string that is used as the seed value for the random data splitting (for example, you can use the S3 path to your data as the random seed string). If you choose the random split strategy, Amazon ML assigns each row of data a pseudo-random number between 0 and 100, and then selects the rows that have an assigned number between percentBegin and percentEnd. Pseudo-random numbers are assigned using both the input seed string value and the byte offset as a seed, so changing the data results in a different split. Any existing ordering is preserved. The random splitting strategy ensures that variables in the training and evaluation data are distributed similarly. It is useful in the cases where the input data may have an implicit sort order, which would otherwise result in training and evaluation datasources containing non-similar data records.

    The following two DataRearrangement lines are examples of non-sequentially ordered training and evaluation datasources:

    Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}}

    Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}

Definition at line 348 of file S3DataSpec.h.

◆ SetDataRearrangement() [2/3]

void Aws::MachineLearning::Model::S3DataSpec::SetDataRearrangement ( const Aws::String value)
inline

A JSON string that represents the splitting and rearrangement processing to be applied to a DataSource. If the DataRearrangement parameter is not provided, all of the input data is used to create the Datasource.

There are multiple parameters that control what data is used to create a datasource:

  • percentBegin

    Use percentBegin to indicate the beginning of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource.

  • percentEnd

    Use percentEnd to indicate the end of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource.

  • complement

    The complement parameter instructs Amazon ML to use the data that is not included in the range of percentBegin to percentEnd to create a datasource. The complement parameter is useful if you need to create complementary datasources for training and evaluation. To create a complementary datasource, use the same values for percentBegin and percentEnd, along with the complement parameter.

    For example, the following two datasources do not share any data, and can be used to train and evaluate a model. The first datasource has 25 percent of the data, and the second one has 75 percent of the data.

    Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}}

    Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25, "complement":"true"}}

  • strategy

    To change how Amazon ML splits the data for a datasource, use the strategy parameter.

    The default value for the strategy parameter is sequential, meaning that Amazon ML takes all of the data records between the percentBegin and percentEnd parameters for the datasource, in the order that the records appear in the input data.

    The following two DataRearrangement lines are examples of sequentially ordered training and evaluation datasources:

    Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential"}}

    Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential", "complement":"true"}}

    To randomly split the input data into the proportions indicated by the percentBegin and percentEnd parameters, set the strategy parameter to random and provide a string that is used as the seed value for the random data splitting (for example, you can use the S3 path to your data as the random seed string). If you choose the random split strategy, Amazon ML assigns each row of data a pseudo-random number between 0 and 100, and then selects the rows that have an assigned number between percentBegin and percentEnd. Pseudo-random numbers are assigned using both the input seed string value and the byte offset as a seed, so changing the data results in a different split. Any existing ordering is preserved. The random splitting strategy ensures that variables in the training and evaluation data are distributed similarly. It is useful in the cases where the input data may have an implicit sort order, which would otherwise result in training and evaluation datasources containing non-similar data records.

    The following two DataRearrangement lines are examples of non-sequentially ordered training and evaluation datasources:

    Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}}

    Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}

Definition at line 285 of file S3DataSpec.h.

◆ SetDataRearrangement() [3/3]

void Aws::MachineLearning::Model::S3DataSpec::SetDataRearrangement ( const char *  value)
inline

A JSON string that represents the splitting and rearrangement processing to be applied to a DataSource. If the DataRearrangement parameter is not provided, all of the input data is used to create the Datasource.

There are multiple parameters that control what data is used to create a datasource:

  • percentBegin

    Use percentBegin to indicate the beginning of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource.

  • percentEnd

    Use percentEnd to indicate the end of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource.

  • complement

    The complement parameter instructs Amazon ML to use the data that is not included in the range of percentBegin to percentEnd to create a datasource. The complement parameter is useful if you need to create complementary datasources for training and evaluation. To create a complementary datasource, use the same values for percentBegin and percentEnd, along with the complement parameter.

    For example, the following two datasources do not share any data, and can be used to train and evaluate a model. The first datasource has 25 percent of the data, and the second one has 75 percent of the data.

    Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}}

    Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25, "complement":"true"}}

  • strategy

    To change how Amazon ML splits the data for a datasource, use the strategy parameter.

    The default value for the strategy parameter is sequential, meaning that Amazon ML takes all of the data records between the percentBegin and percentEnd parameters for the datasource, in the order that the records appear in the input data.

    The following two DataRearrangement lines are examples of sequentially ordered training and evaluation datasources:

    Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential"}}

    Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential", "complement":"true"}}

    To randomly split the input data into the proportions indicated by the percentBegin and percentEnd parameters, set the strategy parameter to random and provide a string that is used as the seed value for the random data splitting (for example, you can use the S3 path to your data as the random seed string). If you choose the random split strategy, Amazon ML assigns each row of data a pseudo-random number between 0 and 100, and then selects the rows that have an assigned number between percentBegin and percentEnd. Pseudo-random numbers are assigned using both the input seed string value and the byte offset as a seed, so changing the data results in a different split. Any existing ordering is preserved. The random splitting strategy ensures that variables in the training and evaluation data are distributed similarly. It is useful in the cases where the input data may have an implicit sort order, which would otherwise result in training and evaluation datasources containing non-similar data records.

    The following two DataRearrangement lines are examples of non-sequentially ordered training and evaluation datasources:

    Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}}

    Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}

Definition at line 411 of file S3DataSpec.h.

◆ SetDataSchema() [1/3]

void Aws::MachineLearning::Model::S3DataSpec::SetDataSchema ( Aws::String &&  value)
inline

A JSON string that represents the schema for an Amazon S3 DataSource. The DataSchema defines the structure of the observation data in the data file(s) referenced in the DataSource.

You must provide either the DataSchema or the DataSchemaLocationS3.

Define your DataSchema as a series of key-value pairs. attributes and excludedVariableNames have an array of key-value pairs for their value. Use the following format to define your DataSchema.

{ "version": "1.0",

"recordAnnotationFieldName": "F1",

"recordWeightFieldName": "F2",

"targetFieldName": "F3",

"dataFormat": "CSV",

"dataFileContainsHeader": true,

"attributes": [

{ "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType": "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" } ],

"excludedVariableNames": [ "F6" ] }

Definition at line 689 of file S3DataSpec.h.

◆ SetDataSchema() [2/3]

void Aws::MachineLearning::Model::S3DataSpec::SetDataSchema ( const Aws::String value)
inline

A JSON string that represents the schema for an Amazon S3 DataSource. The DataSchema defines the structure of the observation data in the data file(s) referenced in the DataSource.

You must provide either the DataSchema or the DataSchemaLocationS3.

Define your DataSchema as a series of key-value pairs. attributes and excludedVariableNames have an array of key-value pairs for their value. Use the following format to define your DataSchema.

{ "version": "1.0",

"recordAnnotationFieldName": "F1",

"recordWeightFieldName": "F2",

"targetFieldName": "F3",

"dataFormat": "CSV",

"dataFileContainsHeader": true,

"attributes": [

{ "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType": "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" } ],

"excludedVariableNames": [ "F6" ] }

Definition at line 667 of file S3DataSpec.h.

◆ SetDataSchema() [3/3]

void Aws::MachineLearning::Model::S3DataSpec::SetDataSchema ( const char *  value)
inline

A JSON string that represents the schema for an Amazon S3 DataSource. The DataSchema defines the structure of the observation data in the data file(s) referenced in the DataSource.

You must provide either the DataSchema or the DataSchemaLocationS3.

Define your DataSchema as a series of key-value pairs. attributes and excludedVariableNames have an array of key-value pairs for their value. Use the following format to define your DataSchema.

{ "version": "1.0",

"recordAnnotationFieldName": "F1",

"recordWeightFieldName": "F2",

"targetFieldName": "F3",

"dataFormat": "CSV",

"dataFileContainsHeader": true,

"attributes": [

{ "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType": "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" } ],

"excludedVariableNames": [ "F6" ] }

Definition at line 711 of file S3DataSpec.h.

◆ SetDataSchemaLocationS3() [1/3]

void Aws::MachineLearning::Model::S3DataSpec::SetDataSchemaLocationS3 ( Aws::String &&  value)
inline

Describes the schema location in Amazon S3. You must provide either the DataSchema or the DataSchemaLocationS3.

Definition at line 802 of file S3DataSpec.h.

◆ SetDataSchemaLocationS3() [2/3]

void Aws::MachineLearning::Model::S3DataSpec::SetDataSchemaLocationS3 ( const Aws::String value)
inline

Describes the schema location in Amazon S3. You must provide either the DataSchema or the DataSchemaLocationS3.

Definition at line 796 of file S3DataSpec.h.

◆ SetDataSchemaLocationS3() [3/3]

void Aws::MachineLearning::Model::S3DataSpec::SetDataSchemaLocationS3 ( const char *  value)
inline

Describes the schema location in Amazon S3. You must provide either the DataSchema or the DataSchemaLocationS3.

Definition at line 808 of file S3DataSpec.h.

◆ WithDataLocationS3() [1/3]

S3DataSpec& Aws::MachineLearning::Model::S3DataSpec::WithDataLocationS3 ( Aws::String &&  value)
inline

The location of the data file(s) used by a DataSource. The URI specifies a data file or an Amazon Simple Storage Service (Amazon S3) directory or bucket containing data files.

Definition at line 88 of file S3DataSpec.h.

◆ WithDataLocationS3() [2/3]

S3DataSpec& Aws::MachineLearning::Model::S3DataSpec::WithDataLocationS3 ( const Aws::String value)
inline

The location of the data file(s) used by a DataSource. The URI specifies a data file or an Amazon Simple Storage Service (Amazon S3) directory or bucket containing data files.

Definition at line 81 of file S3DataSpec.h.

◆ WithDataLocationS3() [3/3]

S3DataSpec& Aws::MachineLearning::Model::S3DataSpec::WithDataLocationS3 ( const char *  value)
inline

The location of the data file(s) used by a DataSource. The URI specifies a data file or an Amazon Simple Storage Service (Amazon S3) directory or bucket containing data files.

Definition at line 95 of file S3DataSpec.h.

◆ WithDataRearrangement() [1/3]

S3DataSpec& Aws::MachineLearning::Model::S3DataSpec::WithDataRearrangement ( Aws::String &&  value)
inline

A JSON string that represents the splitting and rearrangement processing to be applied to a DataSource. If the DataRearrangement parameter is not provided, all of the input data is used to create the Datasource.

There are multiple parameters that control what data is used to create a datasource:

  • percentBegin

    Use percentBegin to indicate the beginning of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource.

  • percentEnd

    Use percentEnd to indicate the end of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource.

  • complement

    The complement parameter instructs Amazon ML to use the data that is not included in the range of percentBegin to percentEnd to create a datasource. The complement parameter is useful if you need to create complementary datasources for training and evaluation. To create a complementary datasource, use the same values for percentBegin and percentEnd, along with the complement parameter.

    For example, the following two datasources do not share any data, and can be used to train and evaluate a model. The first datasource has 25 percent of the data, and the second one has 75 percent of the data.

    Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}}

    Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25, "complement":"true"}}

  • strategy

    To change how Amazon ML splits the data for a datasource, use the strategy parameter.

    The default value for the strategy parameter is sequential, meaning that Amazon ML takes all of the data records between the percentBegin and percentEnd parameters for the datasource, in the order that the records appear in the input data.

    The following two DataRearrangement lines are examples of sequentially ordered training and evaluation datasources:

    Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential"}}

    Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential", "complement":"true"}}

    To randomly split the input data into the proportions indicated by the percentBegin and percentEnd parameters, set the strategy parameter to random and provide a string that is used as the seed value for the random data splitting (for example, you can use the S3 path to your data as the random seed string). If you choose the random split strategy, Amazon ML assigns each row of data a pseudo-random number between 0 and 100, and then selects the rows that have an assigned number between percentBegin and percentEnd. Pseudo-random numbers are assigned using both the input seed string value and the byte offset as a seed, so changing the data results in a different split. Any existing ordering is preserved. The random splitting strategy ensures that variables in the training and evaluation data are distributed similarly. It is useful in the cases where the input data may have an implicit sort order, which would otherwise result in training and evaluation datasources containing non-similar data records.

    The following two DataRearrangement lines are examples of non-sequentially ordered training and evaluation datasources:

    Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}}

    Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}

Definition at line 537 of file S3DataSpec.h.

◆ WithDataRearrangement() [2/3]

S3DataSpec& Aws::MachineLearning::Model::S3DataSpec::WithDataRearrangement ( const Aws::String value)
inline

A JSON string that represents the splitting and rearrangement processing to be applied to a DataSource. If the DataRearrangement parameter is not provided, all of the input data is used to create the Datasource.

There are multiple parameters that control what data is used to create a datasource:

  • percentBegin

    Use percentBegin to indicate the beginning of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource.

  • percentEnd

    Use percentEnd to indicate the end of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource.

  • complement

    The complement parameter instructs Amazon ML to use the data that is not included in the range of percentBegin to percentEnd to create a datasource. The complement parameter is useful if you need to create complementary datasources for training and evaluation. To create a complementary datasource, use the same values for percentBegin and percentEnd, along with the complement parameter.

    For example, the following two datasources do not share any data, and can be used to train and evaluate a model. The first datasource has 25 percent of the data, and the second one has 75 percent of the data.

    Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}}

    Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25, "complement":"true"}}

  • strategy

    To change how Amazon ML splits the data for a datasource, use the strategy parameter.

    The default value for the strategy parameter is sequential, meaning that Amazon ML takes all of the data records between the percentBegin and percentEnd parameters for the datasource, in the order that the records appear in the input data.

    The following two DataRearrangement lines are examples of sequentially ordered training and evaluation datasources:

    Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential"}}

    Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential", "complement":"true"}}

    To randomly split the input data into the proportions indicated by the percentBegin and percentEnd parameters, set the strategy parameter to random and provide a string that is used as the seed value for the random data splitting (for example, you can use the S3 path to your data as the random seed string). If you choose the random split strategy, Amazon ML assigns each row of data a pseudo-random number between 0 and 100, and then selects the rows that have an assigned number between percentBegin and percentEnd. Pseudo-random numbers are assigned using both the input seed string value and the byte offset as a seed, so changing the data results in a different split. Any existing ordering is preserved. The random splitting strategy ensures that variables in the training and evaluation data are distributed similarly. It is useful in the cases where the input data may have an implicit sort order, which would otherwise result in training and evaluation datasources containing non-similar data records.

    The following two DataRearrangement lines are examples of non-sequentially ordered training and evaluation datasources:

    Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}}

    Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}

Definition at line 474 of file S3DataSpec.h.

◆ WithDataRearrangement() [3/3]

S3DataSpec& Aws::MachineLearning::Model::S3DataSpec::WithDataRearrangement ( const char *  value)
inline

A JSON string that represents the splitting and rearrangement processing to be applied to a DataSource. If the DataRearrangement parameter is not provided, all of the input data is used to create the Datasource.

There are multiple parameters that control what data is used to create a datasource:

  • percentBegin

    Use percentBegin to indicate the beginning of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource.

  • percentEnd

    Use percentEnd to indicate the end of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource.

  • complement

    The complement parameter instructs Amazon ML to use the data that is not included in the range of percentBegin to percentEnd to create a datasource. The complement parameter is useful if you need to create complementary datasources for training and evaluation. To create a complementary datasource, use the same values for percentBegin and percentEnd, along with the complement parameter.

    For example, the following two datasources do not share any data, and can be used to train and evaluate a model. The first datasource has 25 percent of the data, and the second one has 75 percent of the data.

    Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}}

    Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25, "complement":"true"}}

  • strategy

    To change how Amazon ML splits the data for a datasource, use the strategy parameter.

    The default value for the strategy parameter is sequential, meaning that Amazon ML takes all of the data records between the percentBegin and percentEnd parameters for the datasource, in the order that the records appear in the input data.

    The following two DataRearrangement lines are examples of sequentially ordered training and evaluation datasources:

    Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential"}}

    Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential", "complement":"true"}}

    To randomly split the input data into the proportions indicated by the percentBegin and percentEnd parameters, set the strategy parameter to random and provide a string that is used as the seed value for the random data splitting (for example, you can use the S3 path to your data as the random seed string). If you choose the random split strategy, Amazon ML assigns each row of data a pseudo-random number between 0 and 100, and then selects the rows that have an assigned number between percentBegin and percentEnd. Pseudo-random numbers are assigned using both the input seed string value and the byte offset as a seed, so changing the data results in a different split. Any existing ordering is preserved. The random splitting strategy ensures that variables in the training and evaluation data are distributed similarly. It is useful in the cases where the input data may have an implicit sort order, which would otherwise result in training and evaluation datasources containing non-similar data records.

    The following two DataRearrangement lines are examples of non-sequentially ordered training and evaluation datasources:

    Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}}

    Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}

Definition at line 600 of file S3DataSpec.h.

◆ WithDataSchema() [1/3]

S3DataSpec& Aws::MachineLearning::Model::S3DataSpec::WithDataSchema ( Aws::String &&  value)
inline

A JSON string that represents the schema for an Amazon S3 DataSource. The DataSchema defines the structure of the observation data in the data file(s) referenced in the DataSource.

You must provide either the DataSchema or the DataSchemaLocationS3.

Define your DataSchema as a series of key-value pairs. attributes and excludedVariableNames have an array of key-value pairs for their value. Use the following format to define your DataSchema.

{ "version": "1.0",

"recordAnnotationFieldName": "F1",

"recordWeightFieldName": "F2",

"targetFieldName": "F3",

"dataFormat": "CSV",

"dataFileContainsHeader": true,

"attributes": [

{ "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType": "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" } ],

"excludedVariableNames": [ "F6" ] }

Definition at line 755 of file S3DataSpec.h.

◆ WithDataSchema() [2/3]

S3DataSpec& Aws::MachineLearning::Model::S3DataSpec::WithDataSchema ( const Aws::String value)
inline

A JSON string that represents the schema for an Amazon S3 DataSource. The DataSchema defines the structure of the observation data in the data file(s) referenced in the DataSource.

You must provide either the DataSchema or the DataSchemaLocationS3.

Define your DataSchema as a series of key-value pairs. attributes and excludedVariableNames have an array of key-value pairs for their value. Use the following format to define your DataSchema.

{ "version": "1.0",

"recordAnnotationFieldName": "F1",

"recordWeightFieldName": "F2",

"targetFieldName": "F3",

"dataFormat": "CSV",

"dataFileContainsHeader": true,

"attributes": [

{ "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType": "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" } ],

"excludedVariableNames": [ "F6" ] }

Definition at line 733 of file S3DataSpec.h.

◆ WithDataSchema() [3/3]

S3DataSpec& Aws::MachineLearning::Model::S3DataSpec::WithDataSchema ( const char *  value)
inline

A JSON string that represents the schema for an Amazon S3 DataSource. The DataSchema defines the structure of the observation data in the data file(s) referenced in the DataSource.

You must provide either the DataSchema or the DataSchemaLocationS3.

Define your DataSchema as a series of key-value pairs. attributes and excludedVariableNames have an array of key-value pairs for their value. Use the following format to define your DataSchema.

{ "version": "1.0",

"recordAnnotationFieldName": "F1",

"recordWeightFieldName": "F2",

"targetFieldName": "F3",

"dataFormat": "CSV",

"dataFileContainsHeader": true,

"attributes": [

{ "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType": "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" } ],

"excludedVariableNames": [ "F6" ] }

Definition at line 777 of file S3DataSpec.h.

◆ WithDataSchemaLocationS3() [1/3]

S3DataSpec& Aws::MachineLearning::Model::S3DataSpec::WithDataSchemaLocationS3 ( Aws::String &&  value)
inline

Describes the schema location in Amazon S3. You must provide either the DataSchema or the DataSchemaLocationS3.

Definition at line 820 of file S3DataSpec.h.

◆ WithDataSchemaLocationS3() [2/3]

S3DataSpec& Aws::MachineLearning::Model::S3DataSpec::WithDataSchemaLocationS3 ( const Aws::String value)
inline

Describes the schema location in Amazon S3. You must provide either the DataSchema or the DataSchemaLocationS3.

Definition at line 814 of file S3DataSpec.h.

◆ WithDataSchemaLocationS3() [3/3]

S3DataSpec& Aws::MachineLearning::Model::S3DataSpec::WithDataSchemaLocationS3 ( const char *  value)
inline

Describes the schema location in Amazon S3. You must provide either the DataSchema or the DataSchemaLocationS3.

Definition at line 826 of file S3DataSpec.h.


The documentation for this class was generated from the following file: